K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2016

     (a+b+c)2\(\ge\) 3(ab+bc+ca) (*)

=>a2+b2+c2+2ab+2bc+2ca\(\ge\) 3ab+3bc+3ca

=>a2+b2+c2\(\ge\) ab+bc+ca

nhân 2 vào cho 2 vế ta được:

2a2+2b2+2c2\(\ge\) 2ab+2bc+2ca

=> (a+b)2+(b+c)2+(c+a)2\(\ge\) 0 (đúng)

=> (*) đúng

12 tháng 7 2023

Mày nhìn cái chóa j

\(a^2+b^2+c^2+d^2+e^2\ge ab+ac+ad+ae\left(1\right)\)

\(\Leftrightarrow a^2+b^2+c^2+d^2+e^2-a\left(b-c-d-e\right)\ge0\)

\(\Leftrightarrow\left(b^2-ab+\frac{1}{4}a^2\right)+\left(c^2-ac+\frac{1}{4}a^2\right)+\left(d^2-ad+\frac{1}{4}a^2\right)+\left(e^2-ae+\frac{1}{4}a^2\right)\ge0\)

\(\Leftrightarrow\left(b+\frac{1}{2}a\right)^2+\left(c+\frac{1}{2}a\right)^2+\left(d+\frac{1}{2}a\right)^2+\left(e+\frac{1}{2}a\right)^2\ge0\left(2\right)\)

( 2 ) đúng => ( 1 ) đúng 

11 tháng 4 2016
giup mik vs. Cau nao cux dk
2 tháng 12 2015

\(\frac{1}{ab}+\frac{1}{a^2+b^2}=\frac{2}{2ab}+\frac{1}{a^2+b^2}\ge\frac{\left(\sqrt{2}+1\right)^2}{2ab+a^2+b^2}=\frac{3+2\sqrt{2}}{\left(a+b\right)^2}=3+2\sqrt{2}\)

Xem lại đề.