Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(A=11+\dfrac{3}{13}-2-\dfrac{4}{7}-5-\dfrac{3}{13}\)
\(=4-\dfrac{4}{7}=\dfrac{24}{7}\)
b: \(B=6+\dfrac{4}{9}+3+\dfrac{7}{11}-4-\dfrac{4}{9}\)
\(=5+\dfrac{7}{11}=\dfrac{62}{11}\)
c: \(C=\dfrac{-5}{7}\left(\dfrac{2}{11}+\dfrac{9}{11}\right)+1+\dfrac{5}{7}=1\)
d: \(D=\dfrac{7}{10}\cdot\dfrac{8}{3}\cdot20\cdot\dfrac{3}{8}\cdot\dfrac{5}{28}\)
\(=\dfrac{20}{10}\cdot7\cdot\dfrac{8}{3}\cdot\dfrac{3}{8}\cdot\dfrac{5}{28}=2\cdot\dfrac{5}{4}=\dfrac{5}{2}\)
\(A=2^1+2^2+2^3+2^4+...+2^{59}+2^{60}\)
\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(A=\left(2+2^4+...+2^{58}\right)\left(1+2+2^2\right)\)
\(A=7\left(2+2^4+...+2^{58}\right)⋮7\left(đpcm\right)\)
b) \(\sqrt{7-2\sqrt{10}}-\sqrt{7+2\sqrt{10}}\)
\(=\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{2}+2}-\sqrt{5+2\cdot\sqrt{5}\cdot\sqrt{2}+2}\)
\(=\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}\)
\(=\left|\sqrt{5}-\sqrt{2}\right|-\left|\sqrt{5}+\sqrt{2}\right|\)
\(=\sqrt{5}-\sqrt{2}-\sqrt{5}-\sqrt{2}\) (vì \(\sqrt{5}\ge\sqrt{2}\)
=0
c) \(\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{3-2\sqrt{3}+1}+\sqrt{3+2\sqrt{3}+1}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\left|\sqrt{3}-1\right|+\left|\sqrt{3}+1\right|\)
\(=\sqrt{3}-1+\sqrt{3+1}\) (vì \(\sqrt{3}\ge1\))
\(=2\sqrt{3}\)
a)\(\sqrt{5+2\sqrt{6}}-\sqrt{5+2\sqrt{6}}\)
\(=\sqrt{3+2\cdot\sqrt{3}\cdot\sqrt{2}+2}-\sqrt{3-2\cdot\sqrt{3}\cdot\sqrt{2}+2}\)
\(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)
\(=\left|\sqrt{3}+\sqrt{2}\right|-\left|\sqrt{3}-\sqrt{2}\right|\)
\(=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}\) (vì \(\sqrt{3}\ge\sqrt{2}\))
=0
Ta có: = (1; 7); = (1; 7)
= => ABCD là hình bình hành (1)
ta lại có : AB2 = 50 => AB = 5 √2
AD2 = 50 => AD = 5 √2
AB = AD, kết hợp với (1) => ABCD là hình thoi (2)
Mặt khác = (1; 7); = (-7; 1)
1.7 + (-7).1 = 0 => ⊥ (3)
Kết hợp (2) và (3) suy ra ABCD là hình vuông
a) (-12; 3] ∩ [-1; 4] = [-1; 3]
b) (4, 7) ∩ (-7; -4) = Ø
c) (2; 3) ∩ [3; 5) = Ø
d) (-∞; 2] ∩ [-2; +∞)= [-2; 2].
a) (-12; 3] ∩ [-1; 4] = [-1; 3]
b) (4, 7) ∩ (-7; -4) = Ø
c) (2; 3) ∩ [3; 5) = Ø
d) (-∞; 2] ∩ [-2; +∞)= [-2; 2].
a: =31/9+31/6=155/18
b: =113/14-45/7=23/7
c: =7-3-6/7=4-6/7=24/7
a, \(\sqrt{3+2\sqrt{2}}-\sqrt{6-4\sqrt{2}}\)
= \(\sqrt{2+2\sqrt{2}+1}-\sqrt{4-4\sqrt{2}+2}\)
= \(\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(2-\sqrt{2}\right)^2}\)
= \(\sqrt{2}\) + 1 - 2 + \(\sqrt{2}\)
= 2\(\sqrt{2}\) - 1
b, \(\sqrt{9-4\sqrt{5}}-\sqrt{5}\)
= \(\sqrt{5-4\sqrt{5}+4}-\sqrt{5}\)
= \(\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{5}\)
= \(\sqrt{5}-2-\sqrt{5}\)
= - 2
c, \(\sqrt{28+8\sqrt{7}}-\sqrt{7}\)
= \(\sqrt{16+8\sqrt{7}+7}-\sqrt{7}\)
= \(\sqrt{\left(4+\sqrt{7}\right)^2}-\sqrt{7}\)
= 4 + \(\sqrt{7}\) - \(\sqrt{7}\)
= 4
1: =>3x^2+5x-7=3x+14
=>2x=21
=>x=21/2
2;=>x+4=4
=>x=0
3: \(\Leftrightarrow\left\{{}\begin{matrix}x>=\dfrac{5}{2}\\4x^2-20x+25-4x+7=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=\dfrac{5}{2}\\4x^2-24x+32=0\end{matrix}\right.\)
=>x>=5/2 và x^2-6x+8=0
=>x=4
4: \(\Leftrightarrow\left\{{}\begin{matrix}x>=1\\x^2+2x-1=x^2-2x+1\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
5: \(\Leftrightarrow\sqrt{2x+16}=x-4\)
=>x>=4 và x^2-8x+16=2x+16
=>x>=4 và x^2-10x=0
=>x=10
a/ \(\Leftrightarrow\sqrt{x^2+x+3}-\sqrt{x^2+2}+\sqrt{x^2+x+8}-\sqrt{x^2+7}=0\)
\(\Leftrightarrow\frac{x+1}{\sqrt{x^2+x+3}+\sqrt{x^2+2}}+\frac{x+1}{\sqrt{x^2+x+8}+\sqrt{x^2+7}}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{\sqrt{x^2+x+3}+\sqrt{x^2+2}}+\frac{1}{\sqrt{x^2+x+8}+\sqrt{x^2+7}}\right)=0\)
\(\Leftrightarrow x+1=0\) (ngoặc to phía sau luôn dương)
\(\Rightarrow x=-1\)
b/
\(\sqrt{7-x^2+x\sqrt{x+5}}=\sqrt{3-2x-x^2}\) (1)
\(\Rightarrow7-x^2+x\sqrt{x+5}=3-2x-x^2\)
\(\Leftrightarrow x\sqrt{x+5}=-2x-4\)
\(\Rightarrow x^2\left(x+5\right)=4x^2+16x+16\)
\(\Rightarrow x^3+x^2-16\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x^2-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=2\\x=-2\end{matrix}\right.\)
Do các phép biến đổi ko tương đương nên cần thay nghiệm vào (1) để kiểm tra
c/ ĐKXĐ: \(x\ge\frac{5}{3}\)
\(\Leftrightarrow\sqrt{10x+1}-\sqrt{9x+4}+\sqrt{3x-5}-\sqrt{2x-2}=0\)
\(\Leftrightarrow\frac{x-3}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{x-3}{\sqrt{3x-5}+\sqrt{2x-2}}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt{10x+1}+\sqrt{9x+4}}+\frac{1}{\sqrt{3x-5}+\sqrt{2x-2}}\right)=0\)
\(\Leftrightarrow x-3=0\) (ngoặc phía sau luôn dương)
d/ Đề bài là \(2\sqrt{2x+3}\) hay \(2\sqrt{2x-3}\) bạn?
e/ ĐKXĐ: \(x\ge-3\)
\(\Leftrightarrow\sqrt{x+3+2\sqrt{x+3}+1}=x+4\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x+3}+1\right)^2}=x+4\)
\(\Leftrightarrow\sqrt{x+3}+1=x+4\)
\(\Leftrightarrow x+3-\sqrt{x+3}=0\)
\(\Leftrightarrow\sqrt{x+3}\left(\sqrt{x+3}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x+3=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\)
c.
545 - 544 = 544 x (54 - 1) = 544 x 53
Vậy 545 - 544 chia hết cho 53.
chị giúp e trả lời câu a vs câu b luôn được ko ạ