Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(2x^2-4x+5=2\left(x^2-2x+1+\dfrac{3}{2}\right)=2\left(x-1\right)^2+3>0\forall x\)
\(2x^2+4x+2=2\left(x+1\right)^2>=0\forall x\)
Do đó: Hai căn thức xác định với mọi x
b: \(\Leftrightarrow-4x+5>4x+2\)
=>-8x>-3
=>x<3/8
@Xin giấu tên
\(x>1\) suy ra \(x>0\) là điều hiển nhiên
Hơn nữa \(x>1\Rightarrow x-1>1-1\leftrightarrow x-1>0\) (liên hệ giữa thứ tự và phép cộng) - Lớp 8
a) có \(\sqrt{x^2+2x+5}=\sqrt{x^2+2x+1+4}=\sqrt{\left(x+1\right)^2+4}\)Vì \(\left(x+1\right)^2\ge0\forall x\in R\rightarrow\left(x+1\right)^2+4\ge0+4=4\forall x\in R\)
\(\Rightarrow\sqrt{x^2+2x+5}\ge\sqrt{0+4}=\sqrt{4}=2\) (đpcm)
Dấu "=" xảy ra khi và chỉ khi \(x=-1.\)
b) \(x>\sqrt{x}\Leftrightarrow x^2>x\Leftrightarrow x^2-x>0\)
\(\Leftrightarrow x\left(x-1\right)\ge0\)
Vì \(x>1\rightarrow x>0;x-1>0\)
\(\Rightarrow x\left(x-1\right)>0\) với mọi \(x>1\)
hay \(x>\sqrt{x}\) (đpcm)
Chúc bạn học tốt!
\(b.\sqrt[3]{x-17}+\sqrt{x+8}=5\) \(\left(ĐK:x\ge-8\right)\)
Đặt: \(a=\sqrt[3]{x-17},b=\sqrt{x+8}\)
\(\Rightarrow x-17=a^3,x+8=b^2\)
Khi đó:
\(\left\{{}\begin{matrix}a+b=5\\a^3-b^2=x-17-x-8=-25\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\a^3-b^2=-25\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\\left(5-b\right)^3-b^2=-25\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\b^3-14b^2+75b-150=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\b^3-5b^2-9b^2+45b+30b-150=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\b^2\left(b-5\right)-9b\left(b-5\right)+30\left(b-5\right)=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\\left(b-5\right)\left(b^2-9b+30\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5-b\\\left[{}\begin{matrix}b=5\\b^2-9b+30=\left(b-\dfrac{9}{2}\right)^2+\dfrac{39}{4}=0\left(l\right)\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=5\end{matrix}\right.\)
Thế vào ta được:
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt[3]{x-17}=0\\\sqrt{x+8}=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-17=0\\x+8=25\end{matrix}\right.\) \(\Leftrightarrow x=17\left(n\right)\)
b) Đk: \(0\le x\le4\)
Ta có: \(\sqrt{4x+x^2}+\sqrt{4x-x^2}=4x+1\)
<=> \(\left(\sqrt{4x+x^2}+\sqrt{4x-x^2}\right)^2=\left(4x+1\right)^2\)
<=> \(\left|4x+x^2\right|+\left|4x-x^2\right|+2\sqrt{\left(4x+x^2\right)\left(4x-x^2\right)}=16x^2+8x+1\)
<=> \(x^2+4x+4x-x^2+2x\sqrt{\left(4-x\right)\left(4+x\right)}=16x^2+8x+1\)
<=> \(2x\sqrt{16-x^2}=16x^2+8x+1-8x\)
<=> \(\left(2x\sqrt{16-x^2}\right)^2=\left(16x^2+1\right)^2\)
<=> \(4x^2\left|16-x^2\right|=256x^4+32x^2+1\)
<=> \(64x^2-4x^4=256x^4+32x^2+1\)
<=> \(260x^4-32x^2+1=0\)
Đặt x2 = k (k > 0) <=> 260k2 - 32k + 1 = 0
Ta có: \(\Delta=32^2-4.260=-16< 0\)
=> pt vô nghiệm
Với mọi n nguyên dương ta có:
\(\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)=1\Rightarrow\frac{1}{\sqrt{n+1}+\sqrt{n}}=\sqrt{n+1}-\sqrt{n}\)
Với k nguyên dương thì
\(\frac{1}{\sqrt{k-1}+\sqrt{k}}>\frac{1}{\sqrt{k+1}+\sqrt{k}}\Rightarrow\frac{2}{\sqrt{k-1}+\sqrt{k}}>\frac{1}{\sqrt{k-1}+\sqrt{k}}+\frac{1}{\sqrt{k+1}+\sqrt{k}}=\sqrt{k}-\sqrt{k-1}+\sqrt{k+1}-\sqrt{k}\)
\(=\sqrt{k+1}-\sqrt{k-1}\)(*)
Đặt A = vế trái. Áp dụng (*) ta có:
\(\frac{2}{\sqrt{1}+\sqrt{2}}>\sqrt{3}-\sqrt{1}\)
\(\frac{2}{\sqrt{3}+\sqrt{4}}>\sqrt{5}-\sqrt{3}\)
...
\(\frac{2}{\sqrt{79}+\sqrt{80}}>\sqrt{81}-\sqrt{79}\)
Cộng tất cả lại
\(2A=\frac{2}{\sqrt{1}+\sqrt{2}}+\frac{2}{\sqrt{3}+\sqrt{4}}+....+\frac{2}{\sqrt{79}+\sqrt{80}}>\sqrt{81}-1=8\Rightarrow A>4\left(đpcm\right)\)
3.
Theo bất đẳng thức cô si ta có:
\(\sqrt{b-1}=\sqrt{1.\left(b-1\right)}\le\frac{1+b-1}{2}=\frac{b}{2}\Rightarrow a.\sqrt{b-1}\le\frac{a.b}{2}\)
Tương tự \(\Rightarrow b.\sqrt{a-1}\le\frac{a.b}{2}\Rightarrow a.\sqrt{b-1}+b.\sqrt{a-1}\le a.b\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=2\)
a: Ta có: \(2x^2-4x+5\)
\(=2\left(x^2-2x+\dfrac{5}{2}\right)\)
\(=2\left(x^2-2x+1+\dfrac{3}{2}\right)\)
\(=2\left(x-1\right)^2+3>0\)(1)
Ta có: \(2x^2+4x+2\)
\(=2\left(x^2+2x+1\right)\)
\(=2\left(x+1\right)^2\)>=0(2)
Từ (1)và (2) suy ra hai căn thức này xác định được với mọi x
b: Ta có: \(\sqrt{2x^2-4x+5}>\sqrt{2x^2+4x+2}\)
\(\Leftrightarrow2x^2-4x+5>2x^2+4x+2\)
=>-8x>-3
hay x<3/8
b/ Sửa đề chứng minh: \(\frac{5a-3b+2c}{a-b+c}>1\)
Theo đề bài ta có:
\(\hept{\begin{cases}f\left(-1\right)=a-b+c>0\left(1\right)\\f\left(-2\right)=4a-2b+c>0\left(2\right)\end{cases}}\)
Ta có: \(\frac{5a-3b+2c}{a-b+c}>1\)
\(\Leftrightarrow\frac{4a-2b+c}{a-b+c}>0\)
Mà theo (1) và (2) thì ta thấy cả tử và mẫu của biểu thức đều > 0 nên ta có ĐPCM
I not sure for this answer if have any trouble you can ask me
a)\(\sqrt{x^2-4x+5}\ge\forall x\)
\(\Leftrightarrow\sqrt{x^2-4x+4+1}\)
\(\Leftrightarrow\sqrt{\left(x+1\right)}^2+1\)
mà \(\sqrt{\left(x+1\right)^2}\ge0\forall x\)
nên \(\sqrt{\left(x+1\right)^2}+1>0\forall x\)
sai ngữ pháp Tiếng Anh :))