Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
A=x^2- y^2=(x-y)(x+y)
Thay x=17, y=13 vào A, ta có: A= (17-13)(17+13)=4.30=120
=> Vậy A=120 tại x=17,y=13.
b, B= (2+1)(22+1)(24+1)(28+1)(216+1) (đề bài đúng)
= 1.(2+1)(22+1)(24+1)(28+1)(216+1)
= (2-1)(2+1)(22+1)(24+1)(28+1)(216+1)
= (22-1)(22+1)(24+1)(28+1)(216+1)
= (24-1)(24+1)(28+1)(216+1)
= (28-1)(28+1)(216+1)
= (216-1) (216+1)
= 232-1
=> B= = 232-1
Bài 1 :
a,Ta có :
\(A=x^2-y^2\)
\(=\left(x-y\right)\left(x+y\right)\)
Với x = 17 và y = 13 ta có :
\(A=\left(17-13\right)\left(17+13\right)\)
\(=4.30\)
\(=120\)
Vậy x = 120 với x = 17 và y = 13 .
b, Nhân biểu thức đã cho với ( 2 - 1 ) ta được :
\(\left(2-1\right)B=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow\left(2-1\right)B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow1.B=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow B=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow B=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(\Leftrightarrow B=2^{32}-1\)
a) VP= (a-b)^2 + 4ab
= a^2 - 2ab + b^2 + 4ab
= a^2 + 2ab + b^2
= (a+b)^2 = VT
Vậy ...
b) VP= (a+b)^2 - 4ab
= a^2 + 2ab + b^2 - 4ab
= a^2 - 2ab + b^2
= (a-b)^2 = VT
Vậy....
c) VP= (a+b)^3 - 3ab (a+b)
= a^3 + 3a^2b + 3ab^2 + b^3 - 3a^2b - 3ab^2
= a^3 + b^3 = VT
Vậy ....
a) Ta có: \(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+2ab+b^2=\left(a+b\right)^2\)
Vậy: (a+b)2 = (a-b)2 + 4ab.
b) Ta có: \(\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab=a^2-2ab+b^2=\left(a-b\right)^2\)
Vậy: (a-b)2 = (a+b)2 - 4ab
c) Ta có: \(\left(a+b\right)^3-3ab\left(a+b\right)=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2=a^3+b^3\)
Vậy: a3 + b3 = (a+b)3 - 3ab(a+b)
Đúng nha!!
a)
\(A=-\left(a-b^2\right)+b\)
\(=>2X\left(x^2+b\right)\)
Chứng minh
A=min a2 + b =........
Câu b tương tự
a) \(2.\left(a^2+b^2\right)=\left(a+b\right)^2\Leftrightarrow2.\left(a^2+b^2\right)-\left(a+b\right)^2=0\)
\(\Leftrightarrow a^2-2ab+b^2=0\Leftrightarrow\left(a-b\right)^2=0\Leftrightarrow a-b=0\Leftrightarrow a=b\)
Đây là bất đẳng thức Bunhia Cốpxki bạn, lên mạng tra cách giải là đc!
a) (a+b)2 = (a-b)2 +4ab
⇔ (a+b)2 = a2 - 2ab + b2 +4ab
⇔ (a+b)2 = a2 + 2ab + b2
⇔ (a+b)2 = (a+b)2
⇒ (a+b)2 = (a-b)2 +4ab (dpcm)
b) (a-b)2 = (a+b)2 - 4ab
⇔ (a-b)2 = a2 + 2ab + b2 - 4ab
⇔ (a-b)2 = a2 - 2ab + b2
⇔ (a-b)2 = (a-b)2
⇒ (a-b)2 = (a+b)2 - 4ab (dpcm)