Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Phải là \((a+b+c)^{\color{red}{2}}=3(ab+bc+ac)\) chứ nhỉ?
VD: Với \(a=b=c=1\) thì \((a+b+c)^3=27\ne 3(ab+bc+ac)=9\) !!!
Mình chép nhầm đề đáng lẽ là mũ 2 nhưng lại chép thành mũ 3 bạn biết giải giải hộ mình với nhé
\(5^2=25=6\) [19]
\(\Rightarrow A=7.6^n+12.6^n=19.6^n\) [19]
Do đó: \(A⋮19\)
7.52n + 12.6n
= 7.52n + ( 19 - 7 ). 6n
= 7.52n + 19. 6n - 7.6n
= 7.52n - 7.6n + 19. 6n
= 7(52n - 6n ) + 19.6n
= 7(25n - 6n ) + 19.6n
Xét 7(25n - 6n ) \(⋮\) 19; 19.6n \(⋮\)19
=> đpcm
phần a sai đề nha bạn
b,Ta có
\(2\equiv2\left(mod13\right)\)
\(\Rightarrow2^{12}\equiv1\left(mod13\right)\)
\(\Rightarrow2^{12.5}.2^{10}\equiv1.2^{10}\left(mod13\right)\)
\(\Rightarrow2^{60}.2^{10}\equiv1024\left(mod13\right)\)
\(\Rightarrow2^{70}\equiv10\left(mod13\right)\)\(\left(1\right)\)
Lại có:
\(3\equiv3\left(mod13\right)\)
\(\Rightarrow3^6\equiv1\left(mod13\right)\)
\(\Rightarrow3^{6.11}.3^4\equiv1.3^4\left(mod13\right)\)
\(\Rightarrow3^{66}.3^4\equiv81\left(mod13\right)\)
\(\Rightarrow3^{70}\equiv3\left(mod13\right)\)\(\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow2^{70}+3^{70}\equiv13\equiv0\left(mod13\right)\)
c, Ta có
\(17\equiv-1\left(mod18\right)\)
\(\Rightarrow17^{19}\equiv-1\left(mod18\right)\)\(\left(1\right)\)
Lại có
\(19\equiv1\left(mod18\right)\)
\(\Rightarrow19^{17}\equiv1\left(mod18\right)\)\(\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow17^{19}+19^{17}\equiv0\left(mod18\right)\)
\(\Rightarrow17^{19}+19^{17}⋮18\)
Bài 1 : 5x2 + 10y2 - 4x - 6xy - 2y + 3 > 0
= (4x2-4x+1)+(x^2-6xy+9y2)+(y^2-2y+1)+1
= (2x-1)^2+(x-3y)^2+(y-1)^2+1>0 (đpcm)
Ta có:
=11^(n+2)+12^(2n+1)
= 121.11^n + 12.144^n
= (133 -12).11^n + 12.144^n
= 133.11^n - 12.11^n + 12.144^n
=133.11^n + 12.(144^n - 11^n)
vì (144^n - 11^n) chia hết cho 133
và: 133.11^n chia hết cho 133
=> chia hết cho 133.
1)
\(7.5^{2n}+12.6^n\)
\(=7.25^n+12.25^n-12.25^n+12.6^n\)
\(=19.25^n-12.\left(25^n-6^n\right)\)
Ta có: 19.25n \(⋮\) 19
Vì 25n - 6n \(⋮\) 25 - 6
=> 25n - 6n \(⋮\) 19
Do đó : \(19.25^n-12.\left(25^n-6^n\right)\) \(⋮\) 19
=> \(7.5^{2n}+12.6^n\) \(⋮\) 19
2)
\(11^{n+2}+12^{2n+1}\)
\(=11^n.121+144^n.12\)
\(=11^n.133-11^n.12+144^n.12\)
\(=11^n.133+12.\left(144^n-11^n\right)\)
Ta có: 11n .133 \(⋮\) 133
Vì 144n - 11n \(⋮\) 144 - 11
=> 144n - 11n \(⋮\) 133
Do đó : \(11^n.133+12.\left(144^n-11^n\right)\) \(⋮\) 133
=> \(11^{n+2}+12^{2n+1}\) \(⋮\) 133