Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có:
\(x^2+xy+y^2=\frac{3}{4}(x^2+2xy+y^2)+\frac{1}{4}(x^2-2xy+y^2)\)
\(=\frac{3}{4}(x+y)^2+\frac{1}{4}(x-y)^2\geq \frac{3}{4}(x+y)^2\)
\(\Rightarrow \sqrt{x^2+xy+y^2}\geq \frac{\sqrt{3}(x+y)}{2}\)
Hoàn toàn tương tự:
\(\sqrt{y^2+yz+z^2}\geq \frac{\sqrt{3}(y+z)}{2}; \sqrt{z^2+xz+x^2}\geq \frac{\sqrt{3}(x+z)}{2}\)
Cộng theo vế các BĐT trên:
\(\Rightarrow \sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+xz+x^2}\geq \sqrt{3}(x+y+z)\)
Ta có đpcm.
Dấu "=" xảy ra khi $x=y=z$
Bài 2:
BĐT cần chứng minh tương đương với:
$4(a^9+b^9)-(a+b)(a^3+b^3)(a^5+b^5)\geq 0$
$\Leftrightarrow 4(a+b)(a^8-a^7b+a^6b^2-a^5b^3+a^4b^4-a^3b^5+a^2b^6-ab^7+b^8)-(a+b)(a^8+a^3b^5+a^5b^3+b^8)\geq 0$
$\Leftrightarrow 4(a^8-a^7b+a^6b^2-a^5b^3+a^4b^4-a^3b^5+a^2b^6-ab^7+b^8)-(a^8+a^3b^5+a^5b^3+b^8)\geq 0$
$\Leftrightarrow 3a^8+3b^8+4a^6b^2+4a^2b^6+4a^4b^4-(4a^7b+4ab^7+5a^5b^3+5a^3b^5)\geq 0$
$\Leftrightarrow (a-b)^2(a^2-ab+b^2)(3a^4+5a^3b+7a^2b^2+5ab^3+3b^4)\geq 0$
BĐT trên luôn đúng vì:
$(a-b)^2\geq 0, \forall a,b$
$a^2-ab+b^2=(a-\frac{b}{2})^2+\frac{3}{4}b^2\geq 0, \forall a,b$
$3a^4+5a^3b+7a^2b^2+5ab^3+3b^4=3(a^4+b^4+2a^2b^2)+a^2b^2+5ab(a^2+b^2)$
$=3(a^2+b^2)^2+5ab(a^2+b^2)+a^2b^2$
$=(a^2+b^2)(3a^2+3b^2+5ab)+a^2b^2=(a^2+b^2)[3(a+\frac{5}{6}b)^2+\frac{11}{12}b^2]+a^2b^2\geq 0$ với mọi $a,b$
Do đó ta có đpcm.
Dấu "=" xảy ra khi $a=b$ hoặc $a+b=0$
Lời giải:
Áp dụng BĐT AM-GM với các số dương $x,y,z$ ta có:
$(\sqrt{3}-1)^2x^2+y^2\geq 2(\sqrt{3}-1)xy$
$(\sqrt{3}-1)^2z^2+y^2\geq 2(\sqrt{3}-1)yz$
$2(\sqrt{3}-1)x^2+2(\sqrt{3}-1)z^2\geq 4(\sqrt{3}-1)xz$
Cộng theo vế và thu gọn:
2(x^2+y^2+z^2)\geq 2(\sqrt{3}-1)(xy+yz+2xz)$
$\Rightarrow P=\frac{x^2+y^2+z^2}{xy+yz+2xz}\geq \sqrt{3}-1$
Vậy $P_{\min}=\sqrt{3}-1$ khi $(\sqrt{3}-1)x=(\sqrt{3}-1)z=y$
Text
Bài này cũng dễ mà:
Áp dụng BĐT Cô-si, ta có:
\(y+z+1\ge3\sqrt[3]{yz}\)
\(\Rightarrow\)\(\dfrac{y+z+1}{3}\ge\sqrt[3]{yz}\)
\(\Rightarrow\)\(\dfrac{x}{\sqrt[3]{yz}}\ge\dfrac{3x}{y+z+1}\)
\(\Rightarrow\)\(\sum\dfrac{x}{\sqrt[3]{yz}}\ge\sum\dfrac{3x}{y+z+1}\)
Mà \(\sum\dfrac{3x}{y+z+1}=\sum\dfrac{3x^2}{xy+xz+x}\)
Áp dụng BĐT Cauchy -Schwaz:
\(\sum\dfrac{3x^2}{xy+xz+x}\ge\dfrac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\)
Mà:
\(xy+yz+xz\le x^2+y^2+z^2\)(BĐT phụ)
\(\Rightarrow\)\(2\left(xy+yz+xz\right)\le2\left(x^2+y^2+z^2\right)=6\)
Áp dụng BĐT Bunhicopski:
\(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)=9\)
\(\Rightarrow x+y+z\le3\)
\(\Rightarrow2\left(xy+yz+xz\right)+x+y+z\le6+3=9\)
\(\Rightarrow\)\(\dfrac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\ge\dfrac{3\left(x+y+z\right)^2}{9}\ge\dfrac{\left(x+y+z\right)^2}{3}\ge xy+yz+xz\left(ĐPCM\right)\)
Dấu "=" xảy ra \(\Leftrightarrow\)x=y=z=1
Lời giải:
Do $xyz=1$ nên tồn tại $a,b,c>0$ sao cho $(x,y,z)=(\frac{a}{b}, \frac{b}{c}, \frac{c}{a})$
Khi đó bài toán trở thành:
Cho $a,b,c>0$. CMR: \(2\left(\frac{a^2}{bc}+\frac{b^2}{ca}+\frac{c^2}{ab}\right)-\left(\frac{a}{c}+\frac{b}{a}+\frac{c}{b}\right)\geq 3\)
\(\Leftrightarrow \frac{2(a^3+b^3+c^3)-(a^2b+b^2c+c^2a)}{abc}\geq 3\)
\(\Leftrightarrow 2(a^3+b^3+c^3)\geq a^2b+b^2c+c^2a+3abc(*)\)
---------------
Áp dụng BĐT AM-GM:
\(a^3+b^3+c^3\geq 3\sqrt[3]{a^3b^3c^3}=3abc(1)\)
Và:
\(\frac{a^3}{3}+\frac{a^3}{3}+\frac{b^3}{3}\geq 3\sqrt[3]{\frac{a^6b^3}{3^3}}=a^2b\)
\(\frac{b^3}{3}+\frac{b^3}{3}+\frac{c^3}{3}\geq 3\sqrt[3]{\frac{b^6c^3}{3^3}}=b^2c\)
\(\frac{c^3}{3}+\frac{a^3}{3}+\frac{a^3}{3}\geq 3\sqrt[3]{\frac{c^6a^3}{3^3}}=c^2a\)
Cộng theo vế và rút gọn \(\Rightarrow a^3+b^3+c^3\geq a^2b+b^2c+c^2a(2)\)
Lấy $(1)+(2)$ ta thu được $(*)$
Do đó ta có đpcm
Dấu "=" xảy ra khi $a=b=c$ hay $x=y=z=1$
Đặt \(\left(x;y;z\right)=\left(\frac{a'}{b'};\frac{b'}{c'};\frac{c'}{a'}\right)\).Cần chứng minh:
\(2\left(\frac{a'^2}{b'c'}+\frac{b'^2}{c'a'}+\frac{c'^2}{a'b'}\right)-\left(\frac{b'}{a'}+\frac{c'}{b'}+\frac{a'}{c'}\right)\)
Đặt \(\left(\frac{a'}{b'};\frac{b'}{c'};\frac{c'}{a'}\right)=\left(a;b;c\right)\). Bây giờ bài toán trở nên dễ dàng hơn:
Cho a, b, c > 0 thỏa mãn abc = 1. Chứng minh rằng \(2\left(ab+bc+ca\right)-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\). Rất hiển nhiên điều này đúng theo AM-GM: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}=3\)
Ta có điều phải chứng minh.
Is that true? Nếu nó đúng, em nghĩ bài này mấu chốt là nhìn ra cách đặt đầu tiên, và một chút may mắn:)
\(VT=\frac{x^4}{xy}+\frac{y^4}{yz}+\frac{z^4}{zx}\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+yz+zx}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2}=x^2+y^2+z^2\)
Dấu "=" xảy ra khi \(x=y=z\)
Áp dụng BĐT AM-GM ta có:
\(\dfrac{x^2}{\sqrt{1-x^2}}=\dfrac{x^3}{x\sqrt{1-x^2}}\ge\dfrac{x^3}{\dfrac{x^2+1-x^2}{2}}=2x^3\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\dfrac{y^2}{\sqrt{1-y^2}}\ge2y^3;\dfrac{z^2}{\sqrt{1-z^2}}\ge2z^3\)
Cộng theo vế 3 BĐT trên ta có:
\(P\ge2x^3+2y^3+2z^3=2\left(x^3+y^3+z^3\right)=2\)
\(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\\ \Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\\ \Leftrightarrow x^2+y^2+z^2-xy-yz-xz\ge0\)
đây là BĐT cơ bản luôn đúng suy ra đpcm