Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)
60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)
b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.
Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.
c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)
2100 chia hết cho 15 => 2100b chia hết cho 15 (2)
Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)
d,Ta có : n^2+n+1=nx(n+1)+1
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.
Mình xin trả lời ngắn gọn hơn! a)60 chia hết cho 15=> 60n chia hết cho 15 15 chia hết cho 15 =>60n+15 chia hết cho 15. 60 chia hết cho 30=>60n chia hết cho 30 15 không chia hết cho 30 =>60n+15 không chia hết cho 30 b)Gọi số tự nhiên đó là A Giả sử A thỏa mãn cả hai điều kiện => A= 15.x+6 & = 9.y+1 Nếu A = 15x +6 => A chia hết cho 3 Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=> c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15. => 1500a+2100b chia hết cho 15. d) A chia hết cho 2;5 => A chia hết cho 10. => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.) Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ) Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ) => A không chia hết cho 2;5
2,
+ n chẵn
=> n(n+5) chẵn
=> n(n+5) chia hết cho 2
+ n lẻ
Mà 5 lẻ
=> n+5 chẵn => chia hết cho 2
=> n(n+5) chia hết cho 2
KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N
3,
A = n2+n+1 = n(n+1)+1
a,
+ Nếu n chẵn
=> n(n+1) chẵn
=> n(n+1) lẻ => ko chia hết cho 2
+ Nếu n lẻ
Mà 1 lẻ
=> n+1 chẵn
=> n(n+1) chẵn
=> n(n+1)+1 lẻ => ko chia hết cho 2
KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)
b, + Nếu n chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
+ Nếu n chia 5 dư 1
=> n+1 chia 5 dư 2
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 2
=> n+1 chia 5 dư 3
=> n(n+1) chia 5 dư 1
=> n(n+1)+1 chia 5 dư 2
+ Nếu n chia 5 dư 3
=> n+1 chia 5 dư 4
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 4
=> n+1 chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)
Ta có : n^2+n=n.n+n=n(n+1) mà n(n+1) có tận cùng là các chữ số sau : 0;2;6
=> n^2+n+6 có tận cùng là các chữ số sau : 2;6;8 nên không chia hết cho 5
dễ mà
học tốt @@
Ta có : n^2+n=n.n+n=n(n+1) mà n(n+1) có tận cùng là các chữ số sau : 0;2;6 => n^2+n+6 có tận cùng là các chữ số sau : 2;6;8 nên không chia hết cho 5
Ta có :
\(n^2+n+6=n\left(n+1\right)+6\)
Vì 2 số tự nhiên liên tiếp chỉ có thể có chữ số tận cùng là 0 ; 2 ; 6
Nên n(n+1+ +6 chỉ có thể có chữ số tận cùng là 6 ; 8 ; 4 ( không chia hết cho 5 )
=> đpcm
Giả sử n\(^2\)+n+2chia hết cho 5
=> n﴾n + 1﴿ + 2 chia hết cho 5.
Ta thấy n﴾n + 1﴿ chẵn
=> n﴾n + 1﴿ + 2 chẵn
Do đó n﴾n + 1﴿ + 2 có tận cùng là 0
=> n﴾n + 1﴿ có tận cùng là 8
Mà n﴾n + 1﴿ là tích 2 số liên tiếp nên không có tận cùng là 8
=> Điều giả sư sai.
Vậy n\(^2\)+n+6 không chia hết cho 5.
a) Ta có :n2+n+2014=n(n+1)+2014
Vì n và n+1 là 2 số tự nhiên liên tiếp nên n(n+1) chia hết cho 2 và 2014 chia hết cho 2 nên n(n+1)+2014 chia hết cho 2(đpcm)
n2+5n+5 chia hết cho 25
=>n2+5n+5 chia hết cho 5
Giả sử n2+5n+5 chia hết cho 5
Vì 5n+5=5(n+1) chia hết cho 5
=>n2 chia hết cho 5,mà 5 là số nguyên tố => n chia hết cho 5
do đó n có dạng:n=5k (k E N)
ta có:n2+5n+5=(5k)2+5.5k+5=52.k2+25k+5=25k2+25k+5
Vì 25k2+25k=25(k2+k) chia hết cho 25,mà 5 ko chia hết cho 25=>n2+5n+5 ko chia hết cho 25
=>Trái giả thiết
Vậy ....
Giả sử n^2 + 5n +5 chia het cho 25 => n^2+5n+5 chia het cho 5 => n^2 chia het cho 5 (do 5n+5 chia het cho 5)
Do đó n chia hết cho 5 (vì 5 là số ng tố) => n=5k (k thuoc N) => n^2+5n+5=25k^2+25k+5
do 25k^2+25k chia het cho 25 nhưng 5 khong chia het cho 25 nen n^2+5n+5 không chia hết cho 25
Chứng minh rằng với mọi số tự nhiên n thì n2 + n + 6 không chia hết cho 5