Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi d là ƯCLN(2n+3;n+1)
Ta có:n+1 chia hết cho d =>2n+2chia hết cho d(1)
2n+3 chia hết cho d(2)
Từ (1)(2)=>(2n+3)-(2n+2)chia hết cho d
hay 1 chia hết cho d
Vậy d=1=>2n+3 và n+1 là hai số nguyên tố cùng nhau(đpcm)
Gọi \(d=UCLN\left(2n+3,4n+8\right)\)
Suy ra \(2n+3\)chia hết cho d và \(4n+8\)chia hết cho d
Ta có :
\(2n+3\)chia hết cho d \(=2.\left(2n+3\right)\text{⋮}d\)nên
Vì \(4n+8\text{⋮}d\)và \(4n+6\text{⋮}d\)nên
\(\left(4n+8\right)-\left(4n+6\right)\text{⋮}d=2\text{⋮}d=d..\left\{1;2\right\}\)
Vì \(2n+3\)là số lẻ nên \(d=2\)
Vậy đó
\(Gọi:d=UCLN\left(2n+3;4n+8\right).Taco\)
\(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\Rightarrow2⋮d\Rightarrow d\in\left\{1;2\right\}\)
Vì: 2n+3 là số lẻ nên d là số lẻ
=> d=1. Vậy 2n+3 và 4n+8 là 2 số nguyên tố cùng nhau
Gọi ƯCLN của 2n+3 và 3n+4 là d ( d thuộc N sao )
=> 2n+3 và 3n+4 đều chia hết cho d
=> 3.(2n+3) và 2.(3n+4) đều chia hết cho d
=> 6n+9 và 6n+8 đều chia hết cho d
=> 6n+9-(6n+8) chia hết cho d hay 1 chia hết cho d
=> d = 1 ( vì d thuộc N sao )
=> ƯCLN của 2n+3 và 3n+4 là 1
=> 2n+3 và 3n+4 là 2 số nguyên tố cùng nhau
k mk nha
thank bn, nhớ ủng hộ mk những câu hỏi sau nha.....>_<
chỉ sửa chỗ :
=>5(3n+1) chia hết cho d
=>3(5n+2)
=>15n+5 chia hết cho d
=>15n +6 chia hết cho d
từ đó........
3n + 1 và 5n +2 là 2 số nguyên tố cùng nhau
Gọi d là UCLN ( 3n+1 và 5n+2)
Ta có:
3n+1 chia hết cho d
5n+2 chia hết cho d
=> 5(3n+1) chia hết cho d
=> 3(5n+2) chia hết cho d
=> 15n+ 1 chia hết cho d
=> 15n+2 chia hết cho d
=> 15n+2- 15n+1 chia hết chi d
=> 1 chia hết cho d
=> d thuộc Ư ( 1)
=> UCLN ( d) = 1
=> UCLN ( d)= UCLN ( 3n+1 và 5n+2
Nguyên tố cùng nhau
tick nhé
Gọi d=ƯCLN(2n+5;4n+8)
=>4n+10-4n-8 chia hết cho d
=>2 chia hết cho d
mà 2n+5 lẻ
nên d=1
=>ĐPCM
Giả sử a và ab+4 cùng chia hết cho 1 số tự nhiên d (d khác 0)
Như vậy thì ab chia hết cho d ,do đó hiệu (ab+4)-ab=4 cũng chia cho d
suy ra d có thể =1;2;4,nhưng a không chia hết cho 2 và 4 vì là số lẻ,vậy d có thể =1 nên các số a và ab+4 là nguyên tố cùng nhau
***** nha !!
2n+3 co tan cung la 1 so le
Ma 4n+8 thuoc dang 4k la so chan => 2 so tren la uoc nguyen to cung nhau
2n+3:d=> 4n+6:d
=> 4n+8-4n+6:d
=>2:d
Ma 2n+3 la so le
=> 2 so tren la so nguyen to cung nhau