Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2 bn nên cộng 3 cái lại
mà năm nay bn lên đại học r đúng k ???
Áp dụng ta đc:
\(\frac{3a+b+c}{a}=\frac{a+3b+c}{b}=\frac{a+b+3c}{c}=\frac{5a+5b+5c}{a+b+c}=5\left(\text{vì: a,b,c khác 0}\right)\)
\(\Rightarrow\hept{\begin{cases}b+c=2a\\c+a=2b\\a+b=2c\end{cases}}\Rightarrow a=b=c\)
\(\Rightarrow P=6\)
\(\frac{3a+b+c}{a}=\frac{a+3b+c}{b}=\frac{a+b+3c}{c}\)
\(\Rightarrow\frac{3a+b+c}{a}-2=\frac{a+3b+c}{b}-2=\frac{a+b+3c}{c}-2\)
\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)
Xét \(a+b+c\ne0\)
\(\Rightarrow a=b=c\)
Thay vào P ta được P=6
Xét \(a+b+c=0\)
\(\Rightarrow a+b=-c;b+c=-a;a+c=-b\)
Thay vào P ta được P= -3
Vậy P có 2 gtri là ...........
Giả sử a,b,c,d khác nhau ta có
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}\)
\(< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\)
\(< 1-\frac{1}{5}< 1\)(trái với giả thiết)
=> điều giả sử là sai => ĐPCM
Giả sử a,b,c,d khác nhau, thì ta sẽ có:
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}\)
\(< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\)
\(< 1-\frac{1}{5}< 1\) (trái với giả thiết)
= > điều giả sử sai = > ĐPCM
\(\frac{P}{m-1}=\frac{m+n}{p}\) dk tồn tại \(VT>0\Rightarrow m>1\)
\(\Leftrightarrow p^2=\left(m+n\right)\left(m-1\right)\)(*)
VT là bp số nguyên tố VP xẩy ra các trường hợp
TH1: p=(m+n)=(m-1)=> n=-1 (loại n tự nhiên)
TH2: Một trong hai số phải =1 có m>1=> m+n>1
=> m-1=1=> m=2
\(\Rightarrow P^2=\left(n+2\right)\left(2-1\right)=n+2\Rightarrow dpcm\)
VT là bp số nguyên tố vp xẩy ra các trường hợp
TH1: p={m+n}={m-1}=>n-1{loai n tu nhien}
TH2:mot trong 2 so phai =1 co m>1=>m+n>=>m-1=1=>m2
chúc bạn làm tốt
\(\frac{p}{m-1}=\frac{m+n}{p}\)
=> p2 = (m+ n)(m - 1)
Vì p \(\in P\RightarrowƯ\left(p\right)=\left\{1;p;p^2\right\}\)
=> Lập bảng xét các trường hợp
m + n | 1 | p | p2 |
m - 1 | p2 | p | 1 |
n | -p2 | -1 (loại) | p2 - 2 |
Khi n = - p2
Vì \(p\ge2\Rightarrow p^2\ge4\)(1)
=> n = - p2 \(\le\)-4 (loại)
Tương tự với n = p2 - 2 Từ (1) ta có p2 - 2 \(\ge2\)(thỏa mãn)
Vậy p2 = n + 2