K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2017

Giả sử \(n^2+11n+39⋮49\) \(\Rightarrow4n^2+44n+156⋮49\)

\(\Rightarrow4n^2+44n+156⋮7\) \(\Leftrightarrow4n^2+2.2n.11+121+35⋮7\)

\(\Leftrightarrow\left(2n+11\right)^2+35⋮7\)\(35⋮7\) nên \(\left(2n+11\right)^2⋮7\) mà 7 là số nguyên tố

\(\Rightarrow\left(2n+11\right)^2⋮49\) \(\Rightarrow4n^2+4n+121⋮49\)

\(4n^2+4n+121+35⋮49\) nên \(35⋮49\) => vô lý vậy điều giả sử là sai

vậy n^2+11n+39 không chia hết cho 49

8 tháng 10 2016

Ta có 

n2 + n + 1=(n+2)(n−1)+3

Giả sử n2+n+1 chia het cho 9

=>(n+2)(n−1)+3 chia hết cho 3 

=> (n+2)(n-1) chia hết cho 3

Mà (n+2)-(n-1)=3 chia hết cho 3

=>n+2 và n-1 cùng chia hết cho 3

=>(n+2)(n−1) chia hết cho 9

=>n+ n + 1chia 9 dư 3

=>vô lý

=>đpcm

8 tháng 10 2016

\(n^2+n+1=n^2+n+\frac{1}{4}-\frac{1}{4}+1=\left(n+\frac{1}{2}\right)^2+\frac{3}{4}\)

Mà 3/4 ko chia hết cho 9 

=> đpcm

8 tháng 2 2018

(n4+6n3+11n2+6n)+24n-24n

= (n4+n3+5n3+5n2+6n2+6)+24.(n-1)

= (n+1)(n3+5n2+6n)+24.(n-1)

=n(n+1)(n2+5n+6)+24.(n-1)

= n(n+1)(n2+3n+2n+6)+24(n-1)

=n(n+1)(n+2)(n+3)+24(n-1)

Vi 4 so tu nhien lien tiep chia het cho 24

=> n(n+1)(n+2)(n+3)⋮24 va 24(n-1)⋮24

=> dpcm

25 tháng 11 2017

=>21 chia hết 49 h minh nhé

21 tháng 10 2019

n2+n+2 = n(n+1)+2

n sẽ có dạng n=3k; n=3k+1; n=3k+2 (k\(\in Z\))

 n=3k => n(n+1) = 3k(3k+1) chia hết cho 3 nên 3k(3k+1)+2 không chia hết cho 3

n=3k +1 => n2+n+2= (3k+1)2 +3k+3; dế thấy 3k+3 chia hết cho 3 nhưng (3k+1)2 không chia hết cho 3 nên n2 +n+2 không chia hết cho 3

n=3k+2 => n(n+1) = (3k+1)(3k+3)=3(3k+1)(k+1) chia hết cho 3 nên (3k+2)(k+3)+2 không chia hết cho 3

vậy với mọi n đều không chia hết
 

20 tháng 8 2016

Ta có:

n3 + 11n

= n3 - n + 12n

= n.(n2 - 1) + 12n

= n.(n - 1).(n + 1) + 12n

= (n - 1).n.(n + 1) + 12n

Vì (n - 1).n.(n + 1) là tích 3 số tự nhiên liên tiếp => tích này chia hết cho 2 và 3

Mà (2;3)=1 => (n - 1).n.(n + 1) chia hết cho 6; 12n chia hết cho 6

=> n3 + 11n chia hết cho 6 ( đpcm)

1 tháng 1 2016

có biết đâu mà giúp, mong bạn thông cảm cho. Nhớ tick cho mình với

6 tháng 11 2017

Câu 2: Nhân cả hai vế của phương trình với 4 , ta có:

\(4x^2+4y^2-4x-4x=32\Leftrightarrow\left(4x-4x+1\right)+\left(4y^2-4y+1\right)=34\)

\(\Leftrightarrow\left(2x-1\right)^2+\left(2y-1\right)^2=34\)

Ta thấy 34 = 52 + 32 nên ta có bảng:

2x-15-53-3
x3-22-1
2y-15-53-3
y3-32-1

Vậy các cặp nghiệm nguyên thỏa mãn là (5;3) , (5;-3) , (-5;3) , (-5;-3) , (3; 5), (3;-5) , (-3; 5), (-3;-5)

7 tháng 11 2017

Xét \(x^2+\frac{1}{x^2}\)=\(\left(x+\frac{1}{x}\right)^2-2\in Z\).Giả sử đúng đến n=k , ta sẽ c/m n đúng đến k+1.

Điều này là hiển nhiên vì \(x^{k+1}+\frac{1}{x^{k+1}}=\left(x+\frac{1}{x}\right)\left(x^k+\frac{1}{x^k}\right)-x^{k-1}-\frac{1}{x^{k-1}}\in Z\)

4 tháng 10 2016

Ta có:\(n^2+n+2=n\left(n+1\right)+2\)

+)Xét n chia hết cho 3 <=> n=3k \(\left(k\in Z+\right)\)

=>\(n^2+n+2=3k\left(3k+1\right)+2\) chia 3 dư 2 (1)

+)Xét n chia 3 dư 1 <=> n=3k+1

=>\(n^2+n+2=\left(3k+1\right)\left(3k+2\right)+2=9k^2+6k+3k+2+2\)

\(=3\left(3k^2+2k+k+1\right)+1\)chia cho 3 dư 1 (2)

+)Xét n chia 3 dư 2 <=> n=3k+2 

=>\(n^2+n+2=\left(3k+2\right)\left(3k+3\right)+2=9k^2+9k+6k+6+2\)

\(=3\left(3k^2+3k+2k+2\right)+2\)chia 3 dư 2 (3)

Từ (1), (2), (3) suy ra n2+n+2 không chia hết cho 3 với \(n\in Z+\)

5 tháng 10 2016

thanks