Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=5\(^n\).(5\(^n\)+1)−6\(^n\)(3\(^n\)+2\(^n\))⋮91
A=25\(^n\)+5\(^n\)−18\(^n\)−12\(^n\)\(\left\{{}\begin{matrix}=\left(25^n-18^n\right)-\left(12^n-5^n\right)⋮7\\=\left(25^n-12^n\right)-\left(18^n-5^n\right)⋮13\end{matrix}\right.\Rightarrow A⋮91\)
Đặt \(A=5^n.\left(5^n+1\right)-6^n.\left(3^{n+2}\right)\)
\(\Rightarrow A=\left(25^n-18^n\right)-\left(12^n-5^n\right)\)
Ta có:
\(\left\{{}\begin{matrix}25^n-18^n⋮25-18=7\\12^n-5^n⋮12-5=7\end{matrix}\right.\Leftrightarrow A⋮7\)
Ta lại có:
\(A=\left(25^n-12^n\right)-\left(18^n-5^n\right)\)
Lại có:\(\left\{{}\begin{matrix}25^n-12^n⋮25-12=13\\18^5-5^5⋮18-5=13\end{matrix}\right.\Leftrightarrow A⋮13\)
Mà (7, 13) = 1 và 7 . 13 = 91
\(\Rightarrow A⋮91\)
Vậy \(5^n.\left(5^n+1\right)-6^n\left(3^n+2\right)⋮91\left(đpcm\right)\)
b, +, Nếu p=2 thì : p^2+14 = 18 ko tm
+, Nếu p=3 thì : p^2+14 = 23 tm
+, Nếu p > 3 => p ko chia hết cho 3
=> p^2 chia 3 dư 1 => p^2+14 chia hết cho 3
Mà p^2+14 > 3 => p^2+14 là hợp số
Vậy p = 3
Tk mk nha
gt= 25n + 5n - 18n - 12n
mình kí hịu đồng dư là dd nhak.
* Chứng minh gt chia het cho 7:
25 dd 4 (mod 7) => 25n dd 4n (mod 7)
18 dd 4 (mod 7) => 18n dd 4n (mod 7)
=> 25n - 18n chia hết cho 7.
chứng minh tt 5n - 12n chia hết cho 7
=> gt chia hết cho 7
* Chứng minh gt chia hết cho 13
25 dd -1 (mod 13) => 25n dd (-1)n (mod 13)
12 dd -1 (mod 13) => 12n dd (-1)n (mod 13)
=> 25n - 12n chia hết cho 13
chứng minh tt 5n - 18n chia hết cho 13
Vậy bài toán \(ĐPCM\)