K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2015

Gọi a, a+1, a+2 lần lượi là 3 số nguyên liên tiếp ( a thuộc Z) 
Tích a(a+1)(a+2) chia hết cho 3 khi một trong ba số trên chia hết cho 3. 
Một số chia cho 3 thì có 3 trường hợp: 
- a chia hết cho 3 
- giả sử a chia 3 dư 1 thì (a+1) chia hết cho 3 => tích a(a+1)(a+2) chia hết cho 3. 
- giả sử a chia 3 dư 2 thì (a+2) chia hết cho 3 => tích a(a+1)(a+2) chia hết cho 3. 
=> Tích a(a+1)(a+2) luôn chia hết cho 3. (1)

Mà 3 trong 3 số nguyên liên tiếp luôn có 1 số chia hết cho 2 (2)

Vì ƯCLN(3;2) 1 nên từ (1) và (2) suy ra 3 số nguyên liên tiếp chia hết cho (2 . 3) = 6

5 tháng 10 2015

Thiếu đề. tích hay tổng hay hiệu hay thương của 3 số tự nhiên ... ?

10 tháng 5 2016

a)Goi day so la a; a+1; a+2; ...; a+n

Dem tung so cua day so tren chia cho n thi co 1 so chi het cho n

Goi so do la a+k (k thuoc N va k>=1 va k <=n)

=> (a+1)(a+2)...(a+k)...(a+n-1)(a+n) chia het cho n

b)Tong cua n so nguyen lien tiep khong chia het cho n vi gia su n=6 thi 1+2+3+4+5+6=21 khong chia het cho 6

11 tháng 10 2023

Gọi a, a + 1, a + 2 lần lượt là ba số tự nhiên liên tiếp (a ∈ ℕ)

Trong ba số tự nhiên liên tiếp chắc chắn có 1 số chẵn nên tích của chúng chia hết cho 2 (1)

Khi lấy a chia cho 3 thì số dư có thể là 0; 1; 2

*) Khi số dư là 0 thì a ⋮ 3

⇒ a(a + 1)(a + 2) ⋮ 3 (2)

*) Khi số dư là 1, đặt a = 3k+ 1 (k ∈ ℕ)

⇒ a + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) ⋮ 3

⇒ a(a + 1)(a + 2) ⋮ 3 (3)

*) Khi số dư là 2, đặt = 3k + 2 (k ∈ ℕ)

⇒ a + 1 = 3k + 2 + 1 = 3k + 3 = 3(k + 1) ⋮ 3

⇒ a(a + 1)(a + 2) ⋮ 3 (4)

Từ (2), (3), (4) ⇒ a(a + 1)(a + 2) ⋮ 3 (5)

Từ (1) và (5) ⇒ tích của ba số tự nhiên liên tiếp chia hết cho 2 và 3

24 tháng 9 2017

Trí zẹp zai

24 tháng 9 2017

Bùi Thị Thu Hiền làm con mẹ gì vậy?

23 tháng 6 2016

Vì tổng 3 số tự nhiên liên tiếp là 1 số lẻ => trong 3 số đó có 2 số chẵn và 1 số lẻ

Gọi 3 số đó là 2k+2; 2k+3; 2k+4 (k thuộc N)

Tích 3 số trên là: (2k+2).(2k+3).(2k+4)

Vì (2k+2).(2k+3).(2k+4) là tích 3 số tự nhiên liên tiếp nên (2k+2).(2k+3).(2k+4) chia hết cho 3 (1)

Do (2k+2).(2k+4) là tích 2 số chẵn liên tiếp nên (2k+2).(2k+4) chia hết cho 8 (2)

Từ (1) và (2), do (3,8)=1 => (2k+2).(2k+3).(2k+4) chia hết cho 24

=> đpcm

26 tháng 11 2017

 Gọi 8 số nguyên liên tiếp lần lượt là 2x – 4, 2x – 3, 2x – 2, 2x – 1, 2x, 2x +1, 2x +2, 2x +3. 
Thì tích tám số tự nhiên liên tiếp là: 
(2x – 4).(2x – 3).(2x – 2).(2x – 1). 2x .(2x +1).(2x +2).(2x +3) 
= 2(x – 2). (2x – 3). 2(x – 1). (2x – 1). 2x. (2x +1) .2(x +1) .(2x +3) 
= 16 (x – 2)(x – 1)x(x + 1).(2x – 3)(2x – 1)(2x +1) .(2x +3) chia hết cho 16 
(x – 2)(x – 1)x(x + 1) là tích 4 số nguyên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 4. do đó (x – 2)(x – 1)x(x + 1) chia hết cho 2.4 = 8 
Vậy (2x – 4).(2x – 3).(2x – 2).(2x – 1). 2x .(2x +1).(2x +2).(2x +3) chia hết cho 16.8 = 128

Lưu ý : Dấu chấm là dấu nhân nha