K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2016

a là số liền sau của b<=>a=b+1

=>a+b=b+1+b=2b+1(1)

 a^2-b^2=(b+1)^2-b^2=(b+1)(b+1)-b^2

=b(b+1)+1(b+1)-b^2=b^2+b+b+1-b^2=2b+1(2)

 Từ (1) và (2)=>đpcm

1 tháng 1 2016

tính thì tính được chứ chứng minh thì hơi khó

11 tháng 12 2022

a: Nếu a chẵn, b chẵn thì ab(a+b)=2k*2c*(2k+2c)=4kc(2k+2c) chia hết cho 2

Nếu a,b ko cùng tính chẵn lẻ thì 

ab(a+b)=2k(2c+1)(2k+2c+1) chia hết cho 2

Nếu a,b lẻ thì (a+b) chia hết cho 2

=>ab(a+b) chia hết cho 2

b: \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\)

27 tháng 6 2018

1.

(a - b) - (b + c) + (c - a) - (a - b - c)

= a - b - b - c + c - a - a + b + c

= (a - a) + (b - b) + (c - c) - (a + b - c)

=0 + 0 + 0 - (a + b - c)

= - (a + b - c)    (đpcm)

2. chju

27 tháng 6 2018

P = a . ( b - a ) - b . ( a - c ) - bc

P = ab - a- ba + bc - bc

P = ab - a2 - ba

P = a . ( b - a - b )

P = a . ( - a ) mà a khác 0 => P có giá trị âm

Vậy biểu thức P luôn âm với a khác 0

22 tháng 12 2018

a) Xét 4 trường hợp :

TH1: a lẻ - b chẵn

=> ab(a+b) chẵn

=> ab(a+b) chia hết cho 2

TH2: a chẵn - b lẻ

=> ab(a+b) chẵn

=> ab(a+b) chia hết cho 2

TH3: a chẵn - b chẵn

=> ab(a+b) chẵn

=> ab(a+b) chia hết cho 2

TH4: a lẻ - b lẻ

=> a + b chẵn

=> ab(a+b) chẵn

=> ab(a+b) chia hết cho 2

Vậy ta có đpcm

22 tháng 12 2018

b) \(ab-ba=10a+b-10b-a\)

\(=9a-9b=9\left(a-b\right)⋮9\left(đpcm\right)\)

5 tháng 2 2017

a) Ta có : \(M=a\left(a+2\right)-a\left(a-5\right)-7\)

\(=a\left[\left(a+2\right)-\left(a-5\right)\right]-7\)

\(=a\left(a+2-a+5\right)-7\)

\(=7a-7\)

Vì 7a ⋮ 7 và -7 ⋮ 7 \(\Rightarrow\) 7a - 7 ⋮ 7 \(\Rightarrow\) M ⋮ 7

b)

+) Nếu a là số chẵn

\(\Rightarrow\) a - 2 và a + 2 là số chẵn

\(\Rightarrow\) \(\left(a-2\right)\left(a+3\right)\)\(\left(a-3\right)\left(a+2\right)\) là số chẵn

\(\Rightarrow\) \(\left(a-2\right)\left(a+3\right)-\left(a-3\right)\left(a+2\right)\) là số chẵn (1)

+) Nếu a là số lẻ

\(\Rightarrow\) a - 3 và a + 3 là số chẵn

\(\Rightarrow\) \(\left(a-2\right)\left(a+3\right)\)\(\left(a-3\right)\left(a+2\right)\) là số chẵn

\(\Rightarrow\) \(\left(a-2\right)\left(a+3\right)-\left(a-3\right)\left(a+2\right)\) là số chẵn (2)

Từ (1)(2) \(\Rightarrow\) \(\left(a-2\right)\left(a+3\right)-\left(a-3\right)\left(a+2\right)\) luôn chẵn

25 tháng 1 2017

a) đặt a ra ngoài rút gọn cái trong

b)pt r` xét

22 tháng 12 2016

có 4 ước