K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2018

3^2n-9=(3^2)^n-9=9^n-9

Ta có:9 đồng dư với 1(mod 8)

\(\Rightarrow\)9^n đồng dư với 1(mod 8)

\(\Rightarrow\)9^n-9 đồng dư với -8(mod 8)

\(\Rightarrow\)9^n-9\(⋮\)8

Vậy 3^2n-9 chia hết cho 72 với mọi số nguyên dương n

4 tháng 3 2018

32n - 9 = (32) - 9 = 9n - 9

+) Thấy dấu hiệu chia hết cho 9

+) Ta có: 9 đồng dư với 1 (mod 8)

=> 9n đồng dư với 1 (mod 8)

=> 9- 9 đồng dư với -8 (mod 8)

=> 9- 9 đồng dư với 0 (mod 8)

=> 9- 9 chia hết cho 8

=> (8; 9) = 1 => 32n - 9 chia hết cho 72.

1 tháng 6 2018

Ta có :

32n - 9 = 9n - 9 nên 32n - 9  \(⋮\)  9       ( 1 )

32n - 9 = ( 3n )2 - 1 - 8 = ( 3n - 1 ) ( 3n + 1 ) - 8 nên 32n - 9 \(⋮\)8      ( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)32n - 9 \(⋮\)72 

13 tháng 10 2017

(2n + 3)2 + 9

= (2n + 3 - 3)(2n + 3 + 3)

= 2n(2n + 6)

= 4n2 + 12n

= 4n . n + 12n

= 16n2

Vì 16 chia hết cho 8 \(\forall x\in Z\)

=> (2n + 3)2 + 9 chia hết cho 8

2 tháng 6 2019

P = ( a - b ) ( a - c ) ( a - d ) ( b - c ) ( b - d ) ( c - d )

Xét 4 số a,b,c,d khi chia cho 3, tồn tại 2 số có cùng số dư khi chia cho 3, hiệu của chúng chia hết cho 3 nên P chia hết cho 3

Xét 4 số a,b,c,d khi chia cho 4

- nếu tồn tại 2 số cùng số dư khi chia cho 4 thì hiệu của chúng chia hết cho 4, do đó P chia hết cho 4

- nếu 4 số ấy có số dư khác nhau khi chia cho 4 ( là 0,1,2,3 ) thì 2 số có dư là 0 và 2 có hiệu chia hết cho 2, 2 số có số dư là 1 và 3

có hiệu chia hết cho 2. do đó P chia hết cho 4

2 tháng 6 2019

#)Giải : 

Trong 4 số a,b,c,d có ít nhất 2 số có cùng số dư khi chia cho 3

Trong 4 số a,b,c,d : Nếu có 2 số có cùng số dư khi chia cho 4 thì hiệu hai số đó sẽ chia hết cho 4 

Nếu không thì 4 số dư theo thứ tự 0,1,2,3 <=> trong 4 số a,b,c,d có hai số chẵn, hai số lẻ 

Hiệu của hai số chẵn và hai số lẻ trong 4 số đó chia hết cho 2 

=> Tích trên chia hết cho 3 và 4 

Mà ƯCLN ( 3; 4 ) = 1 nên ( a - b ) ( a - c ) ( a - d ) ( b - c ) ( b - d ) ( c - d ) chia hết cho ( 3 . 4 ) = 12 

                           #~Will~be~Pens~#

27 tháng 10 2016

\(3^{2n}-9=\left(3^2\right)^n-9=9^n-9\)

+Dễ thấy hiệu trên chia hết cho 9

+Ta có: 9 đồng dư với 1 (mod8)

=>9n đồng dư với 1 (mod8)

=>9n-9 dồng dư với -8 (mod8)

=>9n-9 đồng dư với 0 (mod8)

=>9n-9 chia hết cho 8

Vì (8;9)=1=>32n-9 chia hết cho 72

26 tháng 10 2016

A=9.(3^n-1)

cần cm 3^n-1 chia hết cho 8 mọi n

n=1 A=9.2 đế sai

23 tháng 10 2016

Ta có:

\(2n^3+3n^2+n=n\left(2n^2+3n+1\right)=n\left(2n^2+2n+n+1\right)=n\left[2n\left(n+1\right)+\left(n+1\right)\right]\)

\(=n\left(n+1\right)\left(2n-2+3\right)=n\left(n+1\right)\left(2n-2\right)+3n\left(n+1\right)=2\left(n-1\right)n\left(n+1\right)+3n\left(n+1\right)\)

Ta thấy:

\(n-1;n;n+1\) là 3 số nguyên liên tiếp (\(n\in Z\)) => tích của chúng chia hết cho 2 và 3. \(\Rightarrow2\left(n-1\right)n\left(n+1\right)⋮2.3=6\)

\(3n\left(n+1\right)⋮6\Rightarrow2n^3+3n^2+n⋮6\)

 

13 tháng 8 2017

a. Ta có: \(A=n^6+n^4-2n^2=n^2\left(n^4+n^2-2\right)=n^2\left(n^4+2n^2-n^2-2\right)=n^2[\left(n^2+2\right)-\left(n^2+2\right)]=n^2\left(n^2+2\right)\left(n^2-1\right)\)

Ta lại có: 72 = 8.9 với (8;9) = 1

Xét các trường hợp:

+ Với n = 2k => \(A=\left(2k\right)^2\left(2k+1\right)\left(2k-1\right)\left(4k^2+2\right)\)

\(=8k^2\left(2k+1\right)\left(2k-1\right)\left(2k^2+1\right)⋮8\)

+ Với n = 2k + 1 => \(A=\left(2k+1\right)^2\left(2k+1-1\right)^2=\left(4k^2+4k+1\right)4k^2⋮8\)

Tương tự xét các trường hợp n= 3a và \(n=3a\pm1⋮9\)

Vậy \(A⋮8.9\) hay A chia hết cho 72 ( đpcm)

b.

20 tháng 6 2017

b chia 3 dư bao nhiêu vậy bn ?

20 tháng 6 2017

dư 2 nha bạn

26 tháng 6 2018

ta có n(n+5)-(n-3)(n+2)

=  n2+5n-(n2-n-6)

=n2+5n-n2+n+6

= 6n-6

=6(n-1)

=> 6(n-1) chia hết cho 6

hay n(n+5)-(n-3)(n+2) cũng chia hết cho 6

nhớ k giùm mình nha

25 tháng 6 2018

Mong các bạn sớm giải ra, mình cần cho buổi chiều ngày mai gấp, nếu bạn nào giải được mình sẽ k đúng cho và kết bạn vs bạn đó nha! Cảm phiền các bạn !!!!!!! Giúp mình với nha!