Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
abcabc = abc x 1001 = abc x (7 x 11 x 13)
Suy ra: abcabc chia hết cho 7, cho 11 và cho 13
abcabc=abc.1001=abc.7.11.13 chia hết cho 7;11;13
=>abcabc là bội của 7;11;13
c)2 số lẻ liên tiếp có dạng 2n + 1 và 2n + 3( n \(\in\) N)
Gọi D là ước số chung của chúng.Ta có 2n + 1 chia hết cho D và 3n + 3 chia hết cho D
Nên 2n + 3 - ( 2n+1) chia hết D hay 2 chia hết cho D
Nhưng D ko thể = 2 vì D là ước chung của 2 số lẻ .
Vậy D = 1 tức là 2 số lẻ liên tiếp bao giờ cũng nguyên tố cùng nhau! (đpcm)
d)
N = abcabc = abc x 1001 = abc x (7 x 11 x 13)
=> abcabc chia hết cho 7, cho 11 và cho 13 (đpcm)
abcabc = abc . 1001
= abc . 7 . 11 . 13
= > abcabc chia hết cho 7, 11 , 13 bạn nhé !
abc abc = abc.1001 = abc.143.7 ⋮ 7 (đpcm)
abc abc = abc.1001 = abc.91.11 ⋮ 11(đpcm)
abc abc = abc.1001 = abc.77.13 ⋮ (đpcm)
abcabc=abc*1001
1001 chia hết cho 7,11,13
nên abcabc chia hết cho 7,11,13