Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overline{abcabc}=\overline{abc}\cdot1000+\overline{abc}\)
\(=\overline{abc}\cdot1001\)
\(1001⋮11\)
\(\Rightarrow\overline{abc}\cdot1001⋮11\) (đpcm)
abcabc = abc . 1000 + abc = abc . (1000 + 1)
=> abc . 1001 = abc . 99 . 11
Vì 11 chia hết cho 11 nên abc . 99 . 11 chia hết cho 11
=> abcabc lúc nào cx chia hết cho 11 (đpcm)
\(\overline{abcabc}\)
\(=10^5\cdot a+10^4\cdot b+10^3\cdot c+10^2\cdot a+10^1\cdot b+10^0\cdot c\)
\(=100100\cdot a+10010b+1001c\)
\(=91\left(1100a+110b+11c\right)⋮91\)
abcabc = 1001xabc = 11x91xabc = 13x77xabc nên abcabc bao giờ cũng chia hết cho 11 và 13
Ta xét dãy số 1; 11; 111; ...; 111...11
30 c.số
Khi mỗi số hạng chia cho 29 thì sẽ có 2 số đồng dư
Giả dụ 2 số đó là 111...1 và 111...1 (n > m)
n c.số m c.số
=> 111...1 - 111...1 = 111...100...0 = 111...11 . 10m
n c.số m c.số
Nhưng ƯCLN (10m,29) = 1 => 111...11 chia hết cho 29
Vậy luôn tìm được 1 số có dạng 111...11 chia hết cho 29
Ta xét 1975 số có dạng:
Số thứ nhất: 1974
Số thứ 2: 19741974
..............
Số thứ 1975: 19741974...1974 (có 1975 nhóm số 1974)
Khi chia các số trên cho 1975 số dư lớn nhất là 1974 => có ít nhất 2 số khi chia cho 1975 có cùng số dư
Giả sử có 2 số đó là
197419741974...1974 (có m nhóm số 1974) và 19741974...1974 (có n nhóm số 1974)
Giả sử m>n thì
197419741974...1974 - 19741974...1974=197419741974...1974000...0 (có m-n nhóm số 1974 và 4xn chữ số 0) chia hết cho 1975
A.Ta có: abcabc = 1000abc + abc = 1001.abc
Vì 1001 = 7.11.13 (là tích của 3 số nguyên tố)
=> abcabc luôn chia hết cho 3 số nguyên tố là 7; 11 và 13
B.Ta có: abcdeg = 1000abc + deg = 2001deg chia hết cho 23 và 29
C.Gọi số có 27chữ số 1 là A
A = 111...1 số có 9chữ số 1) x 100...0100...01 (mỗi chỗ 00...0 có 8chữ số 0)
Vì số 111...1 (số có 9cs 1) chia hết cho 9 (tổng các chữ số = 9)
số 100...0100...01 (mỗi chỗ 00...0 có 8chữ số 0) chia hết cho 3 (tổng các chữ số = 3)
=> A chia hết cho 9x3=27
Vậy.
3 k nhé..
Ta có:
\(\overline{abcabc}=1001\overline{abc}\)
\(=143.7.\overline{abc}\)
\(\Rightarrow1001\overline{abc}⋮7\Rightarrow\overline{abcabc}⋮7\)
\(\rightarrowđpcm\)
\(\overline{aaa}=111a\)
\(=37.3.a\)
\(\Rightarrow111a⋮37\Rightarrow\overline{aaa}⋮37\)
\(\rightarrowđpcm\)
\(\overline{1ab1}-\overline{1ba1}\)
\(=1000+\overline{ab}+1-1000-\overline{ba}-1\)
\(=\overline{ab}-\overline{ba}\)
\(=10a+b-10b-a\)
\(=9a-9b\)
\(=9\left(a-b\right)⋮9\)
Mà \(\overline{1ab1}-\overline{1ba1}=\overline{...0}⋮10\)
\(\Rightarrow\overline{1ab1}-\overline{1ba1}⋮9;10\Rightarrow⋮90\)
\(\rightarrowđpcm\)
bn ơi câu b mk ghi nhầm đề là 4 chữ a mới đúng bn giải lại giùm mk nhoa
Ta có: abcabc = 1000abc + abc = 1001.abc
Vì 1001 = 7.11.13 (là tích của 3 số nguyên tố)
=> abcabc luôn chia hết cho 3 số nguyên tố là 7; 11 và 13
Ta có: abcabc = 10000abc + abc = 10001abc
Vì 1001 = 7 x 11 x 13 ( là tích của 3 thừa số nguyên tố )
=> abcabc luôn chia hết cho 3 số nguyên tố là 7 , 11 và 13
Ta có: \(\overline{abcabc}=\overline{abc}.1001=\overline{abc}.91.11⋮11\)
\(\Rightarrow\overline{abcabc}⋮11\left(đpcm\right)\)
Vậy...
bạn giải những bài trước của mình được k, please