Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(a+2002\right)\left(b-2001\right)=\left(b+2001\right)\left(a-2002\right)\)
\(\Leftrightarrow ab-2001a+2002b-2002\cdot2001=ab-2002b+2001a-2001\cdot2002\)
=>-4002a=-4004b
hay a/2002=b/2001
Ta có :
\(b^2=ac\Leftrightarrow\dfrac{a}{b}=\dfrac{b}{c}\)
\(c^2=bd\Leftrightarrow\dfrac{b}{c}=\dfrac{c}{d}\)
\(\Leftrightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
Mà \(\dfrac{a^3}{b^3}=\dfrac{a}{b}.\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}\)
\(\Leftrightarrow\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\dfrac{a}{d}\)
Xem bài tại link này nhé! Bài làm đúng đã đc OLM chọn.
Câu hỏi của Cristiano Ronaldo - Toán lớp 7 - Học toán với OnlineMath
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....-\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+......+\frac{1}{2001}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2002}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2001}+\frac{1}{2002}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+.....+\frac{1}{2002}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+......+\frac{1}{2002}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+......+\frac{1}{1001}\right)\)
\(=\frac{1}{1002}+\frac{1}{1003}+\frac{1}{1004}+.....+\frac{1}{2002}\)
Chúc em học tốt nhé!
Ta có: 220 = (210)2 = 10242 = ....(76)
* Lũy thừa những số tận cùng là 76 thì tận cùng là 76
+ có : 22000 = (220)100 = (....76)100 = ...76
+có: 22001 = 2\(\times2^{2000}\) = 2 \(\times\)( ....76) = (.....52)
+ có: 22002 = 4 \(\times\) 22000 = 4 \(\times\) (...76) = ( ....04)
\(\Rightarrow\) A có 2 chữ số tận cùng là ( 76+52+04) = 132 . Vậy A có tận cùng là 32
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{2001^2}+\frac{1}{2002^2}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{2000.2001}+\frac{1}{2001.2002}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{2000}-\frac{1}{2001}+\frac{1}{2001}-\frac{1}{2002}\)
\(\Rightarrow A< 1-\frac{1}{2002}=\frac{2001}{2002}\left(đpcm\right)\)