K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2016

Ta có 

kết quả là:

Nếu n + 3 là số chẵn

=> ( n + 3 ) ( n + 6 ) chia hết cho 2

Nếu n + 6 là số chẵn

=> ( n + 3 ) ( n + 6 ) chia hết cho 2

4 tháng 10 2016

Nếu n+3 là số chẵn thì\(\Rightarrow\)(n+3)(n+6) chia hết cho 2

Nếu n+6 là số chẵn thì (n+3)(n+6) chia hết cho 2

tk tôi nha

11 tháng 12 2015

li-ke đi tui giải

ko li-ke ko giải

cần li-ke để giải

có li-ke sẽ giải 

11 tháng 12 2015

2 và 2 là 2 số tự nhiên liên tiếp ?

3 và 3 cũng vậy ?

3 tháng 10 2018

23.28 rồi tìm n

n =n+23/n+28

3 tháng 10 2018

Xét 2 trường hợp

1.n=2k =>n+28=2k+28 chia hết cho 2 =>(n+23)(n+28) chia hết cho 2

2.n=2k+1 =>n+23=2k+1+23=2k+24 chia hết cho 2 =>(n+23)(n+28) chia hết cho 2

6 tháng 2 2017

Ta có : 5 : 4 dư 1 suy ra 5 -1 chia hết cho 4

        5^2 :4 dư 1 suy ra 5^2 -1 chia hết cho 4

        5^3 :4 dư 1 suy ra 5^3 -1 chia hết cho 4

suy ra 5^n : 4 dư 1 suy ra 5^n - 1 chia hết cho 4

Vậy 5^n - 1 chia hết cho 4 với n thuộc N

tk mk nha

9 tháng 2 2017

5 : 4 dư 1 thì 5n với n thuộc Z chia cho 4 cũng dư 1

=> Vậy nếu 5n - 1 thì tất nhiên Chia hết cho 4

Xét các TH:

-TH1:\(n=2k\left(k\inℕ\right)\) 

\(\Rightarrow n\left(n+5\right)=2k\left(2k+5\right)⋮2\)

-TH2:\(n=2k+1\left(k\inℕ\right)\)

\(\Rightarrow n\left(n+5\right)=\left(2k+1\right)\left(2k+6\right)⋮2\)

Xét \(\(2\)\) trường hợp
Trường hợp 1:

+) Với \(\(n\)\) là số chẵn( \(\(2n\)\) với\(\(n\inℕ\)\))

Theo bài ra ta có
\(\(2n.\left(2n+5\right)\)\)
\(\(=4n^2+10n\)\)
\(\(=2.\left(2n^2+5n\right)⋮2\)\)
Trường hợp 2:

+) Với \(\(n\)\) là số lẻ (\(\(2n+1\)\)với \(\(n\inℕ\)\))

Theo bài ra ta có:

\(\(\left(2n+1\right)\left(2n+1+5\right)\)\)
\(\(=\left(2n+1\right)\left(2n+6\right)\)\)
\(\(=4n^2+12n+2n+6\)\)
\(\(=4n^2+14n+6\)\)

\(\(=2.\left(n^2+7n+3\right)⋮2\)\)

\(\(\Rightarrow\forall n\inℕ\)\)thì \(\(n.\left(n+5\right)⋮2\left(dpcm\right)\)\)

_Minh ngụy_