Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- nếu n là số lẻ ta có (n+1) là số chẵn và (3n+2) là số lẻ nên tích (n+1). (3n+2) là một số chẵn (a) chia hết cho 2
- nếu n là số chẵn ta có (n+1) là số lẻ và (3n+2) là số chẵn nên tích (n+1). (3n+2) là một số chẵn (b) chia hết cho 2
Từ (a) và (b) thì tích (n+1).(3n+2) chia hết cho 2 với mọi N là số tự nhiên
vì trong 1 tích chỉ cần 1 số nhiên chia hết thì cá tích chia hết
vì có (3n + 2) nên cả tích đó chia hết cho 2
suy ra n-1+3 chia hết cho n-1
mà n-1 chia hết cho n-1
suy ra 3 chia hết cho n-1
vậy n-1 là ước của 3
lập bảng:
n-1 | 1 | -1 | 3 | -3 |
n | 2 | 0 | 4 | -2 |
suy n thuộc 2;0;4;-2
3n-5 chia hết cho n-2
mà n-2 chia hết cho n-2
suy ra 3(n-2) chia hết cho n-2
suy ra 3n-6 chia hết cho n-2
ta có (3n-5)-(3n-6) chia hết cho n-2
suy ra 3n-5-3n+6 chia hết cho n-2
suy ra -5+6 chia hết cho n-2
suy ra 1 chia hết cho n-2
vậy n-2 là ước của 1
lập bảng:
n-2 | 1 | -1 |
n | 3 | 1 |
suy ra n thuộc 3 và 1
tớ giải tỉ mỉ đó mong bạn hiểu
a/ \(2^{225}=\left(2^3\right)^{75}=8^{75}\)
\(3^{151}>3^{150}=\left(3^2\right)^{75}=9^{75}\)
Mà \(8^{75}< 9^{75}\)
=> \(2^{225}< 3^{150}< 3^{151}\)
b/ Xét n là số lẻ
=> n + 1 chẵn
=> n + 1 ⋮ 2
=> (n+1)(3n+2) ⋮2
Xét n là số chẵn
=> 3n chẵn
=> 3n+2 chẵn
=> (n+1)(3n+2) ⋮2
Do đó A = (n+1)(3n+2) chia hết cho 2 với mọi số tự nhiên n
a) Giải:
Đặt \(A_n=11^{n+2}+12^{2n+1}\)\((*)\) Với \(n=0\) ta có:
\(A_0=11^2+12^1=133\) \(⋮133\Rightarrow\) \((*)\) đúng
Giả sử \((*)\) đúng đến giá trị \(k=n\) tức là:
\(B_k=11^{k+2}+12^{2k+1}\) \(⋮133\left(1\right)\)
Xét \(B_{k+1}-B_k\)
\(=11^{k+1+2}+12^{2\left(k+1\right)+1}-\left(11^{k+2}+12^{2k+1}\right)\)
\(=11^{k+3}-11^{k+2}+12^{2k+3}-12^{2k+1}\)
\(=10.11^{k+2}+143.12^{2k+1}\)
\(=10.121.11^k+143.12.144^k\)
\(\equiv\) \(10.121.11^k+10.12.11^k\)
\(\equiv\) \(10.11^k\left(121+12\right)\) \(\equiv\) \(0\left(mod133\right)\)
Theo giả thiết quy nạy \(\left(1\right)\) ta có: \(B_k⋮133\Leftrightarrow B_{k+1}⋮133\)
Hay \((*)\) đúng với \(n=k+1\) \(\Rightarrow\) Đpcm
a, (3n+2) - (n-6) = 3n+2-n+6 = 2n+8 luôn chia hết cho 2
b, (n+2) + (n+4) + 6 = n+2+n+4+6 = 2n+12 luôn chia hết cho 2
c, (n+3)+2(n+4)+1 = n+3+2n+8+1 = 3n+12 luôn chia hết cho 3
Trả lời ngắn tí như ri này:
Ta có:\(3.25^n.5\) =\(15.25^n\) \(\equiv15.8^n\left(mod17\right)\) .
\(2^{3n+1}=8^n.2\left(mod17\right)\) .
\(\Rightarrow3.5^{2n+1}+2^{3n+1}\equiv15.8^n+2.8^n\left(mod17\right)\) .
\(=17.8^n\) chia hết cho 17 \(\forall\) so nguyên n.
\(3\cdot5^{2n+1}+2^{3n+1}=3\cdot5^{2n}\cdot5+2^{3n}\cdot2=15\cdot25^n+8^n\cdot2\)
\(=\left(17-2\right)\cdot25^n+8^n\cdot2=17\cdot25^n-2\cdot25^n+8^n\cdot2=17\cdot25^n-2\left(25^n-8^n\right)\)
\(=17\cdot25^n-2\left(25-8\right)\left(25^{n-1}+25^{n-2}\cdot8+25^{n-3}\cdot8^2+...+8^{n-1}\right)\)
\(=17\cdot25^n-34\left(25^{n-1}+25^{n-2}\cdot8+25^{n-3}\cdot8^2+...+8^{n-1}\right)\)
vì 17 chia hết cho 17 nên 17*25^n chia hết cho 17(1)
vì 34 chia hts cho 17 nên 34(25^n-1+25^n-2*8+25^n-3*8^2+...+8^n-1) chia hết cho 17
\(\Rightarrow17\cdot25^n-34\left(25^{n-1}+25^{n-2}\cdot8+25^{n-3}\cdot8^2+...+8^{n-1}\right)\)chia hết cho 17
\(\Rightarrow3\cdot5^{2n+1}+2^{3n+1}\)chia hết cho 17 (đpcm)
\(\frac{\left(n+1\right)\left(3n+2\right)}{2}=\frac{3n^2+5n+2}{2}=\frac{3}{2}n^2+\frac{5}{2}n+1\)