Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-6x+11=\left(x^2-6x+9\right)+2\)\(=\left(x-3\right)^2+2\)
Vì \(\left(x-3\right)^2\ge0\Leftrightarrow\left(x-3\right)^2+2\ge2\)
Mặt khác 2 > 0 nên \(\left(x-3\right)^2+2>0\Leftrightarrow x^2-6x+11>0\)\(\forall x\inℝ\)
a) Ta có: -\(x^2\)+4x - 9
<=> - ( \(x^2\)- 4x + 4 ) - 5
<=> - ( x - 2 )\(^2\) - 5
Vì - ( x - 2 )\(^2\)\(\le\)0 <=> - ( x - 2 )\(^2\) - 5 \(\le\)-5 với mọi x
b) Ta có x\(^2\)- 2x + 9
<=> ( x\(^2\) - 2x +1 ) + 8
<=> ( x - 1 ) \(^2\)+ 8
Vì ( x - 1 ) \(^2\)\(\ge\) 0 <=> ( x - 1 ) \(^2\)+ 8 \(\ge\) 8 với mọi thực x
a,Ta có:\(-x^2+4x-9\)
\(\Leftrightarrow-\left(x^2-4x+4\right)-5\)
\(\Leftrightarrow-\left(x-2\right)^2-5\)
Vì \(-\left(x-2\right)^2\le0\Leftrightarrow-\left(x-2\right)^2-5\le-5\forall x\)
b.Ta có:\(x^2-2x+9\)
\(\Leftrightarrow\left(x^2-2x+1\right)+8\)
\(\Leftrightarrow\left(x-1\right)^2+8\)
Vì \(\left(x-1\right)^2\ge0\Leftrightarrow\left(x-1\right)^2+8\ge8\forall x\)
a) \(9c^2-6c+3\)
\(=\left(9c^2-6c+1\right)+2=\left(3c-1\right)^2+2>0\)
b) \(14m-6m^2-13\)
\(=-6.\left(m^2-\frac{7}{3}m+\frac{13}{6}\right)\)
\(=-6.\left(m^2-2\cdot\frac{7}{6}\cdot m+\frac{49}{36}+\frac{29}{36}\right)\)
\(=-6.\left(m-\frac{7}{6}\right)^2-\frac{29}{6}< 0\)
c) \(a^2-2a+2=\left(a-1\right)^2+1>0\)
d) \(6b-b^2-10=-\left(b^2-6b+9\right)-1=-\left(b-3\right)^2-1< 0\)
Ta có (a + b + c)2 \(\ge0\forall a;b;c\inℝ\)
=> a2 + b2 + c2 + 2ab + 2bc + 2ca \(\ge\)0
=> a2 + b2 + c2 \(\ge\)0 - (2ab + 2bc + 2ca)
=> a2 + b2 + c2 \(\le\)2ab + 2bc + 2ca
=> a2 + b2 + c2 \(\le\)2(ab + bc + ca)
Dấu "=" xảy ra <=> a + b + c = 0
Xí bài 2 ý a) trước :>
4x2 + 2y2 + 2z2 - 4xy - 4xz + 2yz - 6y - 10z + 34 = 0
<=> ( 4x2 - 4xy + y2 - 4xz + 2yz + z2 ) + ( y2 - 6y + 9 ) + ( z2 - 10z + 25 ) = 0
<=> [ ( 4x2 - 4xy + y2 ) - 2( 2x - y )z + z2 ] + ( y - 3 )2 + ( z - 5 )2 = 0
<=> [ ( 2x - y )2 - 2( 2x - y )z + z2 ] + ( y - 3 )2 + ( z - 5 )2 = 0
<=> ( 2x - y - z )2 + ( y - 3 )2 + ( z - 5 )2 = 0
Ta có : \(\hept{\begin{cases}\left(2x-y-z\right)^2\\\left(y-3\right)^2\\\left(z-5\right)^2\end{cases}}\ge0\forall x,y,z\Rightarrow\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2\ge0\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-y-z=0\\y-3=0\\z-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\\z=5\end{cases}}\)
Thế vào T ta được :
\(T=\left(4-4\right)^{2014}+\left(3-4\right)^{2014}+\left(5-4\right)^{2014}\)
\(T=0+1+1=2\)
Ta xét \(x^5-x\)
\(x^5-x=x\left(x^4-1\right)=x\left(x^2-1\right)\left(x^2+1\right)\)
\(=x\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)
\(\Rightarrow\)Biểu thức trên chia hết cho 3 do có 3 số nguyên liên tiếp \(\left(x-1\right)x\left(x+1\right)\)
Hay \(x^5-5⋮3...\) xét \(x^5-x+2\) ta có:
Do \(x^5-x⋮3\Rightarrow x^5-x+2\)chia 3 dư 2.
Ta xét lần lượt các số k có dạng 3k; 3k + 1; 3k + 2 thì ta thấy rằng cả 3 trường hợp khi bình phương lên thì đều chia hết cho 3 hoặc chia 3 dư 1.
=> Không có số chính phương nào chia 3 dư 2.
\(\Rightarrow x^5-x+2\) không là số chính phương.
1.
a. $A=\frac{x^3-x+2}{x-2}=\frac{x^2(x-2)+2x(x-2)+4(x-2)+10}{x-2}$
$=x^2+2x+4+\frac{10}{x-2}$
Với $x$ nguyên, để $A$ nguyên thì $\frac{10}{x-2}$ là số nguyên.
Khi $x$ nguyên, điều này xảy ra khi $10\vdots x-2$
$\Rightarrow x-2\in \left\{\pm 1; \pm 2; \pm 5; \pm 10\right\}$
$\Rightarrow x\in \left\{3; 1; 4; 0; 7; -3; 12; -8\right\}$
b.
\(B=\frac{2x^2+5x+8}{2x+1}=\frac{x(2x+1)+3x+8}{2x+1}=x+\frac{3x+8}{2x+1}\)
Với $x$ nguyên, để $B$ nguyên thì $3x+8\vdots 2x+1$
$\Rightarrow 2(3x+8)\vdots 2x+1$
$\Rightarrow 3(2x+1)+13\vdots 2x+1$
$\Rightarrow 13\vdots 2x+1$
$\Rightarrow 2x+1\in \left\{\pm 1; \pm 13\right\}$
$\Rightarrow x\in \left\{0; -1; 6; -7\right\}$
Bài 2:
$P=\frac{8x^3-12x^2+6x-1}{4x^2-4x+1}=\frac{(2x-1)^3}{(2x-1)^2}=2x-1$
Với $x$ nguyên thì $2x-1$ cũng là số nguyên.
$\Rightarrow P$ nguyên với mọi $x$ nguyên.
\(a,x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
\(b,-x^2+2x-4=-\left(x^2-2x+1+3\right)\)
\(=-\left[\left(x-1\right)^2+3\right]< 0\forall x\)