Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=4+22+23+...+220
Đặt B=22+23+...+220
=>2B=23+24+...+221
=>2B-B=221-22=221-4
=>A=4+B=4+221-4=221
=>A là lũy thừa của 2(ĐPCM)
b)A=3+32+33+...+3100
=>3A=32+33+...+3101
=>3A-A=3101-3
=>2A=3101-3
=>2A+3=3101-3+3=3101
Vậy 2A+3 là lũy thừa của 3(ĐPCM)
\(A=7+7^2+.....+7^{100}\)
\(\Leftrightarrow7A=7^2+7^3+.....+7^{100}+7^{101}\)
\(\Leftrightarrow7A-A=\left(7^2+7^3+....+7^{101}\right)-\left(7+7^2+...+7^{100}\right)\)
\(\Leftrightarrow6A=7^{101}-7\)
\(\Leftrightarrow6A+7=7^{101}\)
\(\Leftrightarrow6A+7\) là 1 lũy thừa của 7
2. A = 3 + 32 + 33 +...+ 3100
=> 3A = 32 + 33 +...+ 3101
=> 3A - A = 3101 -3
=>2A = 3101 - 3
=>2A + 3 =3101 - 3 + 3=3101
Vậy 2A+3 là 1 lũy thừa của 3
1.
a) 2711 và 818
2711 = (33)11 = 333
818 = (34)8 = 332
\(\Rightarrow\) 2711 > 818
\(M=1+3+3^2+3^3+....+3^{47}+3^{48}+3^{49}\)
\(M=\left(1+3+3^2\right)+...+\left(3^{47}+3^{48}+3^{49}\right)\)
\(M=13\left(1+....+17\right)⋮13\left(\text{đ}pcm\right)\)
S = 3 + 32 + 33 + ... + 3100
=> 3S = 32 + 33 + ... + 3100+3101
=> 2S = 3101 - 3
=> 2S + 3 = 3101 + 3 - 3 = 3101
=> 2S + 3 là 1 lũy thừa của 3 ( ĐPCM)
Cho Mình Tích Nha
S = 3 + 32 + 33 + ... + 3100
=> 3S = 32 + 33 + ... + 3100+3101
=> 2S = 3101 - 3
=> 2S + 3 = 3101 + 3 - 3 = 3101
=> 2S + 3 là 1 lũy thừa của 3 ( ĐPCM)
a: \(M=3\left(1+3^2+3^4\right)+...+3^{95}\left(1+3^2+3^4\right)\)
\(=273\left(1+...+3^{95}\right)⋮13\)
b: \(9M=3^3+3^5+...+3^{101}\)
\(\Leftrightarrow8M=3^{101}-3\)
\(\Leftrightarrow M=\dfrac{3^{101}-3}{8}\)
\(2M+3=\dfrac{3^{101}-3}{4}+3=\dfrac{3^{101}-3+12}{4}=\dfrac{3^{101}+9}{4}\)
Ta có :
\(A=3+3^2+3^3+...+3^{100}\)
\(\Leftrightarrow\)\(3A=3^2+3^3+3^4+...+3^{101}\)
\(\Leftrightarrow\)\(3A-A=\left(3^2+3^3+3^4+...+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)
\(\Leftrightarrow\)\(2A=3^{101}-3\)
\(\Leftrightarrow\)\(A=\frac{3^{101}-3}{2}\)
\(\Rightarrow\)\(2A+3=\frac{3^{101}-3}{2}.2+3=3^{101}-3+3=3^{101}\)
Vì \(3^{101}\) là một luỹ thừa của \(3\)nên \(2A+3\) là một luỹ thừa của \(3\)
Vậy \(2A+3\)laf một luỹ thừa của \(3\)
\(A=3+3^2+......+3^{100}\)
\(\Leftrightarrow3A=3^2+3^3+.....+3^{101}\)
\(\Leftrightarrow3A-A=\left(3^2+3^3+.....+3^{101}\right)-\left(3+3^2+...+3^{100}\right)\)
\(\Leftrightarrow2A=3^{101}-3\)
\(\Leftrightarrow2A+3=3^{101}\)
\(\Leftrightarrow2A+3\) là 1 lũy thừ của 3