\(a)\ (\dfrac{1}{3})^{2\sqrt{5}}<(\dfrac{1}{3})^{3\sqrt{2}}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

a) ta có 2√5= = √20 ; 3√2 = = √ 18 => 2√5 > 3√2

=> <

b) 6√3 = = √108 ; 3√6 = = √54 => 6√3 > 3√6 => >



GV
26 tháng 4 2017

a) \(2\sqrt{5}=\sqrt{2^2.5}=\sqrt{20}\)

\(3\sqrt{2}=\sqrt{3^2.2}=\sqrt{18}\)

=> \(2\sqrt{5}>3\sqrt{2}\)

=> \(\left(\dfrac{1}{3}\right)^{2\sqrt{5}}< \left(\dfrac{1}{3}\right)^{3\sqrt{2}}\)

(vì cơ số \(\dfrac{1}{3}< 1\))

b) Vì \(3< 6^2\)

=> \(3^{\dfrac{1}{6}}< \left(6^2\right)^{\dfrac{1}{6}}\)

=> \(\sqrt[6]{3}< 6^{\dfrac{1}{3}}\)

=> \(\sqrt[6]{3}< \sqrt[3]{6}\)

=> \(7^{\sqrt[6]{3}}< 7^{\sqrt[3]{6}}\)

31 tháng 3 2017

a) = =

b) = = = . ( Với điều kiện b # 1)

c) \(\dfrac{a^{\dfrac{1}{3}}b^{-\dfrac{1}{3}-}a^{-\dfrac{1}{3}}b^{\dfrac{1}{3}}}{\sqrt[3]{a^2}-\sqrt[3]{b^2}}\)= = = ( với điều kiện a#b).

d) \(\dfrac{a^{\dfrac{1}{3}}\sqrt{b}+b^{\dfrac{1}{3}}\sqrt{a}}{\sqrt[6]{a}+\sqrt[6]{b}}\) = = = =


 

31 tháng 3 2017

2.

a). = = .

b) = = = b.

c) : = : = a.

d) : = : =



GV
26 tháng 4 2017

Câu a, b thì Nguyễn Quang Duy làm đúng rồi.

c) \(a^{\dfrac{4}{3}}:\sqrt[3]{a}=a^{\dfrac{4}{3}}:a^{\dfrac{1}{3}}=a^{\dfrac{4}{3}-\dfrac{1}{3}}=a\)

d) \(\sqrt[3]{b}:b^{\dfrac{1}{6}}=b^{\dfrac{1}{3}}:b^{\dfrac{1}{6}}=b^{\dfrac{1}{3}-\dfrac{1}{6}}=b^{\dfrac{1}{6}}\)

AH
Akai Haruma
Giáo viên
27 tháng 12 2017

Lời giải:

Từ $A$ kẻ $AA'$ song song với trục $OO'$ ( $A'$ nằm trên đáy có tâm $O'$)

Khi đó \(AA'=OO'=a\sqrt{3}\) và \(AA'\) vuông góc với hai đáy.

\(AA'\parallel OO'\Rightarrow OO'\parallel (AA'B)\)

\(\Rightarrow d(OO', AB)=d(OO', (AA'B))=d(O', (AA'B))\)

Kẻ \(O'H\perp A'B\)

\(\left\{\begin{matrix} O'H\subset (\text{ đáy})\rightarrow O'H\perp AA'\\ O'H\perp A'B \end{matrix}\right.\) \(\Rightarrow O'H\perp (AA'B)\)

\(\Rightarrow O'H=d(O', (AA'B))=d(OO', AB)\)

-------------------------------------------

Do \(OO'\parallel AA'\) nên:

\((OO', AB)=30^0\Rightarrow (AA', AB)=30^0\Leftrightarrow \angle BAA'=30^0\)

\(\Rightarrow \frac{\sqrt{3}}{3}=\tan BAA'=\frac{BA'}{AA}=\frac{BA'}{a\sqrt{3}}\)

\(\Rightarrow BA'=a\Rightarrow BH=\frac{a}{2}\)

\(O'H=\sqrt{O'B^2-BH^2}=\sqrt{r^2-BH^2}=\sqrt{a^2-(\frac{a}{2})^2}=\frac{\sqrt{3}}{2}a\)

\(\Leftrightarrow d(AB,OO')=\frac{\sqrt{3}}{2}a\)

Đáp án B

AH
Akai Haruma
Giáo viên
11 tháng 8 2017

Lời giải:

Đặt \(\log_yx=a,\log_xy=b\). Khi đó ta có:

\(\left\{\begin{matrix} a+b=\frac{10}{3}\\ ab=\log_xy.\log_yx=1\end{matrix}\right.\)

Áp dụng định lý Viete đảo thì \(a,b\) là nghiệm của PT:

\(x^2-\frac{10}{3}x+1=0\) . PT trên có hai nghiệm \(3,\frac{1}{3}\)

Giả sử \(a=\log_yx=3\)\(b=\log_xy=\frac{1}{3}\)

\(\left\{\begin{matrix} \log_y\left(\frac{144}{y}\right)=3\\ \log_x\left(\frac{144}{x}\right)=\frac{1}{3} \end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=24\sqrt{3}\\ y=2\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow \frac{x+y}{2}=13\sqrt{3}\). Đáp án D

31 tháng 3 2017

a) Vì ( hoặc ) nên các đường thẳng: x = -3 và x = 3 là các tiệm cận đứng của đồ thị hàm số.

nên các đường thẳng: y = 0 là các tiệm cận ngang của đồ thị hàm số.

b) Hai tiệm cận đứng : ; tiệm cận ngang : .

c) Tiệm cận đứng : x = -1 ;

nên đồ thị hàm số không có tiệm cận ngang.

d) Hàm số xác định khi :

( hoặc ) nên đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số.

nên đường thẳng y = 1 là tiệm cận ngang (về bên phải) của đồ thị hàm số.

23 tháng 4 2017

a)

\(A=2^{2-3\sqrt{5}}.8^{\sqrt{5}}=2^{2-3\sqrt{5}}.2^{3\sqrt{5}}=2^{\left(2-3\sqrt{5}\right)+3\sqrt{5}}=2^2=4\)

\(A=4\)

d)

\(D=\left(4^{2\sqrt{3}}-4^{\sqrt{3}-1}\right).2^{-2\sqrt{3}}=2^{4\sqrt{3}-2\sqrt{3}}-2^{2\sqrt{3}-2-2\sqrt{3}}\)

\(D=2^{2\sqrt{3}}-\dfrac{1}{4}\)

GV
26 tháng 4 2017

b) \(=\dfrac{3^{1+2\sqrt[3]{2}}}{3^{2\sqrt[3]{2}}}=3^{1+2\sqrt[3]{2}-2\sqrt[3]{2}}=3^1=3\)

c) \(=\dfrac{\left(2.5\right)^{2+\sqrt{7}}}{2^{2+\sqrt{7}}5^{1+\sqrt{7}}}=\dfrac{2^{2+\sqrt{7}}5^{2+\sqrt{7}}}{2^{2+\sqrt{7}}5^{1+\sqrt{7}}}=5\)

d) \(=\left(2^{2.\left(2\sqrt{3}\right)}-2^{2\left(\sqrt{3}-1\right)}\right).2^{-2\sqrt{3}}\)

\(=2^{4\sqrt{3}-2\sqrt{3}}-2^{2\sqrt{3}-2-2\sqrt{3}}\)

\(=2^{2\sqrt{3}}-2^{-2}\)

\(=2^{2\sqrt{3}}-\dfrac{1}{2^2}\)

\(=\dfrac{2^{2+2\sqrt{3}}-1}{4}\)