K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2018

 ta có : a = 3m +1 và b = 3n +2 (với n,m là STN) 
=> a nhân b = (3m + 1)(3n + 2) = 9nm + 6m + 3n + 2 = 3(3mn + 2m + n) + 2 
suy ra : a nhân b chia 3 dư 2

5 tháng 7 2015

1) a chia 6 dư 2 => a= 6k+2

b chia 6 dư 3 => b= 6k+3

=> ab=\(\left(6k+2\right)\left(6k+3\right)=36k^2+30k+6\)=> chia hết cho 6 

2) a= 5k+2; b=5k+3

=> \(ab=\left(5k+2\right)\left(5k+3\right)=25k^2+25k+6=25k\left(k+1\right)+6\)

=> dễ thấy 25k(k+1) chia hết cho 5. 6 chia 5 dư 1

=> ab chia 5 dư 1

20 tháng 7 2016

gọi a=3p+r

b=3q+r

xét a-b= (3p+r)-(3q+r)

=3p + r - 3q - r

=3p+3q =3.(p+q) chia hết cho 3

các câu sau làm tương tự

20 tháng 7 2016

ủng hộ mik nha

10 tháng 10 2018

Hơi khó nha! @@@

â) Gọi số thứ nhất là x, số thứ 2 là y, thương của phép chia 1  là m, thương của phép chia 2 là n, số dư của 2 phép chia đó là a. Theo đề bài, ta có:

\(x:5=m\)(dư a)

\(y:5=n\)(dư a)

\(x-y⋮5\)

Ta có:

\(5.5=5+5+5+5+5\)

\(5.4=5+5+5+5\)

=> Khoảng cách giữa mỗi tích là 5. 

Vậy tích 1 + 5 = tích 2

=> tích 1 (dư a) + 5 = tích 2 (dư a)

Mà:

 5 = tích 2 (dư a) -  tích 1 (dư a)

5 = tích 2 - tích 1 (a biến mất do a - a = 0 (Một số bất kì trừ chính nó =  0))

tích 2 -  tích 1 = 5

Không có thời gian làm câu b sorry bạn nhé!

Mình sẽ làm sau!

7 tháng 10 2019

Ta có a = 3q+a, b = 3q+2

a+b = 3q+1+3q+2 ó a+b = 6q+3 ta thấy 6q+3 chia hết cho 3.

Vậy a+b chia hết cho 3

16 tháng 1 2019

3 tháng 11 2024

`A = 1 + 2 + 2^2 + 2^3 + ... + 2^41` $\\$

`2A = 2 + 2^2 + 2^3 + ... + 2^42`$\\$

`2A - A = (2 + 2^2 + 2^3 + ... + 2^42) - (1 + 2 + 2^2 + 2^3 + ... + 2^41)` $\\$

`2A - A = 2 + 2^2 + 2^3 + ... + 2^42 - 1 - 2 - 2^2 - 2^3 - ... - 2^41`$\\$

`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^41 - 2^41) + 2^42`$\\$

`2A - A = - 1 + 2^42`$\\$

hay `A = -1 + 2^42`$\\$

3 tháng 11 2024

`A = 1 + 2 + 2^2 + 2^3 + ... + 2^{41}` $\\$

`2A = 2 + 2^2 + 2^3 + ... + 2^{42}`$\\$

`2A - A = (2 + 2^2 + 2^3 + ... + 2^{42}) - (1 + 2 + 2^2 + 2^3 + ... + 2^{41})` $\\$

`2A - A = 2 + 2^2 + 2^3 + ... + 2^{42} - 1 - 2 - 2^2 - 2^3 - ... - 2^{41}`$\\$

`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^{41} - 2^{41}) + 2^42`$\\$

`2A - A = - 1 + 2^{42}`$\\$

hay `A = -1 + 2^{42}`$\\$