K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2015

+) Trong ba số nguyên liên tiếp, có một số chia hết cho 3. Vì \(p,p+2\) là các số nguyên tố lớn hơn 3, suy ra \(p+1\)  chia hết cho 3. Vậy \(p+\left(p+2\right)=2\left(p+1\right)\vdots3.\)

+) \(p,p+2\) là các số nguyên tố lẻ nên chia cho 4 chỉ có thể dư là 1 hoặc 3.

Nếu \(p=4k+1\to p+2=4k+3\to p+\left(p+2\right)=2\left(p+1\right)=4\left(2k+1\right)\vdots4.\)

Nếu \(p=4k+3\to p+2=4k+5\to p+\left(p+2\right)=2\left(p+1\right)=4\left(k+2\right)\vdots4.\)

Vậy tổng \(p+\left(p+2\right)\)  vừa chia hết cho \(3\) vừa chia hết cho \(4\), nên chia hết cho \(12\).

+ Ta sẽ chứng minh bằng phản chứng
- giả sử p + p + 2 không chia hết cho 12 <> p + 1 không chia hết cho 6
<> p = 6n hoạc p = 6n + 1 .... hoạc p = 6n + 4
- với p = 6n ( n >= 1) => p là hợp số mâu thuẫn
- với p = 6n + 1 ( n >= 1) => p + 2 = 6n + 3 = 3(2n + 1) là hợp số => mâu thuẫn
- ....
- với p = 6n + 4 ( n>= 0) => p cũng là hợp số
Vậy p + 1 phải chia hết cho 6 hay p + p + 2 phải chia hết cho 12

13 tháng 12 2023

Yamate học ngu hay hoi

13 tháng 12 2023

Ghughi

22 tháng 12 2015

3)                         CM:p+1 chia hết cho 2

vì p lớn hơn 3 suy ra p là số lẻ và p+1 là số chẵn.

Vậy p+1 chia hết cho 2

                             CM:p+1 chia hết cho 3

Ta có:p x (p+1) x (p+2) chia hết cho 3(vì tích 3 số liên tiếp luôn chia hết cho 3)

Mà p và p+2 là số nguyên tố nên p và p+2 ko chia hết cho 3

Vậy p+1 chia hết cho 3

Mà ƯCLN(2,3) là 1

Vậy p+1 chia hết cho 2x3 là 6

Vậy p+1 chia hết cho 6 với mọi p lớn hơn 3 và p+2 cùng là số nguyên tố.  

17 tháng 2 2015

huk mìk như pn thuj có 6 đề hsg đây nè

18 tháng 2 2015

Mình giải đc r ^^ 

5 tháng 1 2016

p  + p + 2 = 2p  +2 = 2(p  +1) chia hết cho 2

p nguyên tố lớn hơn 3

< = > p chia 3 dư 1 => p  + p  +2 chia hết cho 3

p chia 3 dư 2 < = > p + p + 2 chia 3 dư 1

Bạn xem lại đề 

25 tháng 5 2021

Giả sửa là stn lớn hơn 4 nằm giữa 2 snt sinh đôi

=> a là số chẵn => a chia hết cho 2

Mặt khác, vì trong 3 stn liên tiếp luôn có 1 số chia hết cho 3 nên a chia hết cho 3 ( vì số liền trước và liền sau là các snt >3 nên ko chia hết cho 3 )

Vậy a chia hết cho 2x3 hay a chia hết cho 6

27 tháng 2 2016

xét ba trường hợp :

# trường hợp 1 : 3 số có dạng 6k+1 ( k thuộc n* ) => hiệu của 1 trong 3 số bằng 0 (chia hết cho 12) thỏa mãn nhé bạn hiền

# trường hợp 2 : 3 so co dang 6k+5( k thuộc n* )=> hiệu của 1 trong 3 số bằng 0 (chia hết cho 12) thỏa mãn nhé bạn hiền 

# trường hợp 3 : 1 số có dạng 6k+1 và 2 số còn lại có dạng 6k+5 => có 2 số có tổng 6k+1+6k+5=12k+6(loai)

BẠN THỬ KIỂM TRA LẠI ĐỀ BÀI XEM

26 tháng 12 2021

xét ba trường hợp :

# trường hợp 1 : 3 số có dạng 6k+1 ( k thuộc n* ) => hiệu của 1 trong 3 số bằng 0 (chia hết cho 12) thỏa mãn nhé bạn hiền

# trường hợp 2 : 3 so co dang 6k+5( k thuộc n* )=> hiệu của 1 trong 3 số bằng 0 (chia hết cho 12) thỏa mãn nhé bạn hiền 

# trường hợp 3 : 1 số có dạng 6k+1 và 2 số còn lại có dạng 6k+5 => có 2 số có tổng 6k+1+6k+5=12k+6(loai)