Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯCLN(n + 2019 ; n + 2020) = d \(\left(d\inℕ^∗\right)\)
=> \(\hept{\begin{cases}n+2019⋮d\\n+2020⋮d\end{cases}\Rightarrow n+2020-\left(n+2019\right)⋮d\Rightarrow1⋮d\Rightarrow d=1}\)
=> \(\frac{n+2019}{n+2020}\)là phân số tối giản
\(\frac{n+2019}{n+2020}\)
+) Gọi d = ƯCLN ( n + 2019 ; n+2020 ) ( d là số tự nhiên )
\(\Rightarrow\hept{\begin{cases}n+2019⋮d\\n+2020⋮d\end{cases}}\)
\(\Rightarrow n+2020-n+2019⋮d\)
\(\Rightarrow1⋮d\)
Mà d là số tự nhiên
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\) ( n+2019; n+2020 ) =1
\(\Rightarrow\) P/s \(\frac{n+2019}{n+2020}\) tối giản
@@ Học tốt @@
## Chiyuki Fujito
Mình cũng là cn của nick trên muốn gợi ý cho các bạn 2 số này là 2 số nguyên tố cùng nhau chỉ cần chứng minh như vậy
Gọi ƯCLN(n+2018;n+2019) = a
Có n+2018 chia hết cho a
và n+2019 chia hết cho a
=> (n+2019)-(n+2018) chia hết cho a
=> 1 chia hết cho a
=> a = 1
ƯCLN(n+2018;n+2019) = 1
=> \(\dfrac{n+2018}{n+2019}\) là phân số tối giản
a/
Gọi $d=ƯCLN(n+1, 2n+3)$
$\Rightarrow n+1\vdots d; 2n+3\vdots d$
$\Rightarrow 2n+3-2(n+1)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$
b/
Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé.
Bạn xem lại đề.
Giả sử (m + n)/n không là phân số tối giản. Đặt Ư CLN(m + n;n) = d (d ≠ 1). Khi đó (m + n) ⋮ d, n ⋮ d => (a + b) - b ⋮ d => a ⋮ d mà n ⋮ d => m/n không tối giản (vô lý) => với mọi d khác 1 m/n không tối giản => d = 1 => (m + n)/n cũng là phân số tối giản. Vậy ta có đpcm.
gọi d là ƯC(n; n + 1)
\(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)
=> n + 1 - n ⋮ d
=> 1 ⋮ d
=> d = 1
=> n/n+1 là phân số tối giản với mọi n thuộc N
\(\text{Gọi ƯCLN( n , n + 1 ) = d}\)
\(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\Rightarrow\left(n+1\right)-\left(n\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow\text{ Phân số }\frac{n}{n+1}\text{ là phân số tối giản}\)
phân số trên không tối giản đâu bạn.VD n=0
suy ra 0+3/0-12 = 3/(-12) không tối giản
Đặt ƯCLN (n+2019; n+2020)=d
\(\Rightarrow\left\{{}\begin{matrix}\left(n+2020\right)⋮d\\\left(n+2019\right)⋮d\end{matrix}\right.\Rightarrow\left(n+2020\right)-\left(n+2019\right)⋮d\Rightarrow1⋮d\Rightarrow d=1\)
⇒ƯCLN (n+2019; n+2020)=d=1
\(\Rightarrow\frac{n+2019}{n+2020}\)là phân số tối giản (đpcm)
Gọi dϵƯC(n+2019,n+2020)với d ∈N*
⇒n+2019⋮d,n+2020⋮
⇒(n+2020)-(n+2019)=1⋮d⇒d =1
⇒ĐPCM