Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(2x+3)(4x^2-6x+9)-2(4x^3-1)
=8x^3-12x^2+18x+12x^2-18x+27-8x^3+2
=29
Câu 2:
\(=2\left(x^2-\frac{1}{2}+\frac{3}{2}\right)\)
\(=2\left(x^2-\frac{1}{2}+\left(\frac{1}{4}\right)^2-\left(\frac{1}{4}\right)^2+\frac{3}{2}\right)\)
\(=2\left(\left(x-\frac{1}{4}\right)^2+\frac{23}{16}\right)\)
\(=2\left(x-\frac{1}{4}\right)^2+2.\frac{23}{16}\)
\(=2\left(x-\frac{1}{4}\right)^2+\frac{23}{8}\le\frac{23}{8}\)
Vậy MaxB = \(\frac{23}{8}\Leftrightarrow x-\frac{1}{4}=0\)
\(\Leftrightarrow x=\frac{1}{4}\)
Ta có:
\(\left(x-2\right)^2\ge0\)
\(\Rightarrow\left(x-2\right)^2+3\ge3\)
Vậy biểu thức \(\left(x-2\right)^2+3\) có giá trị nhỏ nhất là 3 khi x - 2 = 0 hay x = 2
cái này lp 6 còn lm đc
đặt A=(x-2 )2 + 3
ta thấy:
(x-2)2\(\ge\)0
=>(x-2)2+3\(\ge\)0+3
<=>A\(\ge\)3
vậy Amin=3 khi x=2
_ Tại \(x=1;y=\dfrac{1}{2}\) thì:
\(1^2\left(\dfrac{1}{2}\right)^3+1.\dfrac{1}{2}\)
\(=\dfrac{1}{8}+\dfrac{1}{2}=\dfrac{5}{8}\)
Vậy giá trị của b/t đại số = \(\dfrac{5}{8}.\)
thay x=1; y= 1/2 vào biểu thức x^2y^3+xy ta được
1^2 x (1/2)^3 + 1 x 1/2
= 1 x 1/8 + 1/2
=1/8 + 4/8
=5/8
vậy giá trị của biểu thức x^2y^3+xy tại x=1; y=1/2 là:5/8
\(-x^2\le0\)
\(\Rightarrow-x^2+2\le2\)
Vậy giá trị lớn nhất của biểu thức trên là 2 khi và chỉ khi x=0
\(A=3x^2-3x+7-4x^2+5x-3+x^2-2x\)
\(=\left(3x^2+x^2-4x^2\right)+\left(-3x+5x-2x\right)+4\)
=4