K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta thực hiện : Phân tích đa thức thành nhân tử để xuất hiện đa thức chia :

Ta có : \(x^8+x+1\)

\(=\left(x^8-x^2\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x^6-1\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left[x^2\left(x-1\right)\left(x^3+1\right)+1\right]\)

Đến đây chỉ ra nó chia hết cho \(x^2+x+1\) rất dễ dàng.

4 tháng 12 2019

Cảm ơn bạn nhiều , bữa sau có bài tập gì mong bạn giúp đỡhehe

5 tháng 9 2020

\(P\left(x\right)=x^{100}+x^2+1=x^{100}-x^{99}+x^{98}+x^{99}-x^{98^{ }}+x^{97}-x^{97}+x^{96}-x^{95}+...+x^2-x+1\)

\(=x^{98}\left(x^2-x+1\right)+x^{97}\left(x^2-x+1\right)-x^{95}\left(x^2-x+1\right)-...+\left(x^2-x+1\right)\)

\(=\left(x^2-x+1\right)\left(x^{98}+x^{97}-x^{95}-...+1\right)\)=> đpcm

30 tháng 7 2016

\(\left(x+y\right)^3-x^3y^3=\left(x+y\right)^3-\left(xy\right)^3\)

=\(\left(x+y+xy\right)\left[\left(x+y\right)^2-xy\left(x+y\right)+x^2+y^2\right]\)

NV
11 tháng 4 2020

Câu 2:

Ta có:

\(P\left(x\right)=x^{100}+x^2+1\)

\(=x^{100}-x^{99}+x^{98}+x^{99}-x^{98}+x^{97}+...+x^3-x^2+x^2+x^2-x+1\)

\(=x^{98}\left(x^2-x+1\right)+x^{97}\left(x^2-x+1\right)+...+\left(x^2-x+1\right)\)

\(=\left(x^{98}+x^{97}+...+x+1\right)\left(x^2-x+1\right)\)

\(=Q\left(x\right).\left(x^{98}+x^{97}+...+x+1\right)\)

\(\Rightarrow P\left(x\right)⋮Q\left(x\right)\)

NV
11 tháng 4 2020

Câu 1:

Do P(x) bậc 3 và \(x^2-x+1\) bậc 2 nên đa thức thương có bậc 1, gọi đa thức thương có dạng \(ax+b\)

Do \(P\left(x\right)\) chia hết \(x-1\)\(x-2\) nên \(P\left(1\right)=P\left(2\right)=0\)

Do \(P\left(x\right)\) chia \(x^2-x+1\)\(2x-3\)

\(\Rightarrow P\left(x\right)=\left(ax+b\right).\left(x^2-x+1\right)+2x-3\)

Thay \(x=1\) ta được:

\(P\left(1\right)=\left(a+b\right)\left(1-1+1\right)+2-3=0\)

\(\Leftrightarrow a+b=1\)

Thay \(x=2\) ta được:

\(P\left(2\right)=\left(2a+b\right)\left(4-2+1\right)+4-3=0\)

\(\Leftrightarrow3\left(2a+b\right)=-1\Leftrightarrow6a+3b=-1\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=1\\6a+3b=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{4}{3}\\b=-\frac{7}{3}\end{matrix}\right.\)

\(\Rightarrow P\left(x\right)=\left(\frac{4}{3}x-\frac{7}{3}\right)\left(x^2-x+1\right)+2x-3\)

Bạn có thể nhân phá ra và rút gọn

19 tháng 11 2020

a) \(x^3+x^2-x+a=\left(x^2-x+1\right)\left(x+2\right)+\left(a-2\right)\).

Đa thức trên chia hết cho \(x+2\) khi và chỉ khi a = 2.

b) \(x^3+ax^2+2x+b=\left(x^2+x+1\right)\left(x+1\right)+\left(a-2\right)x^2+\left(b-1\right)\) chia hết cho \(x^2+x+1\) khi và chỉ khi:

\(\frac{a-2}{1}=\frac{0}{1}=\frac{b-1}{1}\Leftrightarrow a=2;b=1\).

c) Tương tự.

26 tháng 10 2017

Nếu tối chưa có ai làm thì để mình làm cho,bây h mk bận phải đi học r

1 tháng 3 2020

\(P\left(x\right)=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+a\). đặt \(y=x^2+8x+9\)

Ta đc \(P\left(x\right)=\left(y-2\right)\left(y+6\right)+a=y^2+4y-12+a\)

Và Q(x)=y

Thực hiện phép chia P(x) cho Q(x) đc.... rút ra a=?( nếu a phải chia hết cho y)


1 tháng 3 2020

Giải cả ra cho dễ hiểu!

19 tháng 10 2019

a) ta có (2n2-n+2)/(2n+1)=n-1(dư 3)

vậy muốn 2n2-n+2 chia hết cho 2n+1 thì 2n+1ϵƯ(3)

mà Ư(3)={-3;-1;1;3}

nên

2n+1=-3 và 2n+1=-1 và 2n+1=1 và 2n+1=3

=> 2n=-4 và 2n=-2 và 2n=0 và 2n=2

=> n=-2 và n=-1 và n=0 và n=1

vậy nϵ{-2;-1;0;1}

b) ta có x3+x2-x+a/(x+1)2=x-1(dư -x2-2x+a)

\(x^2-2x+a-\left(-x^2-2x-1\right)=a+1\)

và muốn \(x^3+x^2-x+a\) chia hết cho \(\left(x+1\right)^2\)thì a+1=0

=> a=-1

NV
26 tháng 2 2019

\(\left(\left(x+y\right)^2\right)^3+\left(\left(x-y\right)^2\right)^3\)

\(=\left(\left(x+y\right)^2+\left(x-y\right)^2\right)\left(\left(x+y\right)^4-\left(x^2-y^2\right)^2+\left(x-y\right)^4\right)\)

\(=\left(2x^2+2y^2\right)\left(\left(x+y\right)^4-\left(x^2-y^2\right)^2+\left(x-y\right)^4\right)\)

\(=2\left(x^2+y^2\right)\left(\left(x+y\right)^4-\left(x^2-y^2\right)^2+\left(x-y\right)^4\right)⋮\left(x^2+y^2\right)\)

26 tháng 2 2019

\(\left(x+y\right)^6+\left(x-y\right)^6\)

\(=\left[\left(x+y\right)^2\right]^3+\left[\left(x-y\right)^2\right]^3\)

\(=\left[\left(x+y\right)^2+\left(x-y\right)^2\right]\left(...\right)\)

\(=\left(x^2+2xy+y^2+x^2-2xy+y^2\right)\left(...\right)\)

\(=\left(2x^2+2y^2\right)\left(...\right)\)

\(=2\left(x^2+y^2\right)\left(...\right)⋮x^2+y^2\left(đpcm\right)\)