K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2021

\(x^4+2x^2+1=\left(x^2+1\right)^2\ge1>0\forall x\) ( đpcm ) 

18 tháng 5 2021

`x^4+2x^2+1`

`=(x^2)^2 + 2.x^2 .1 + 1^2`

`=(x^2+1)^2 > 0 forall x`.

17 tháng 6 2020

\(P\left(x\right)=4x^3-\frac{3}{2}x^2-x+10\)

\(P\left(-2\right)=4\cdot\left(-2\right)^3-\frac{3}{2}\cdot\left(-2\right)^2-\left(-2\right)+10\)

\(=4\cdot\left(-8\right)-6+2+10\)

\(=-26\)

* H(x) + Q(x) = P(x)

<=> H(x) = P(x) - Q(x)

H(x) = \(4x^3-\frac{3}{2}x^2-x+10-\left(10-\frac{1}{2}x-2x^2+4x^3\right)\)

        = \(4x^3-\frac{3}{2}x^2-x+10-10+\frac{1}{2}x+2x^2-4x^3\)

        = \(\frac{1}{2}x^2-\frac{1}{2}x\)

* H(x) luôn nguyên với mọi x 

Chỗ này bạn xem lại đề 

a, Ta có : \(P\left(-2\right)=4\left(-2\right)^3-\frac{3}{2}\left(-2\right)^2-\left(-2\right)+10\)

\(=-32.\left(-6\right)+2+10=192+2+10=204\)

b, \(H\left(x\right)+Q\left(x\right)=P\left(x\right)\)

\(H\left(x\right)=P\left(x\right)-Q\left(x\right)\)

\(H\left(x\right)=4x^3-\frac{3}{2}x^2-x+10-10+\frac{1}{2}x+2x^2-4x^3\)

\(=\frac{1}{2}x^2-\frac{1}{2}x\)

ta có x2+x+1= x2+x+1+x-x= (x+1)2-x

Vì (x+1)2 \(\ge\)0   và (x+1)2>x 

nên x2+x+1 luôn luôn dương với mọi giá trị của x

29 tháng 3 2018

xét x>0 suy ra biểu thúc có gi trị dương

xét x,0

ta có \(x^2\)>0

suy ra \(x^2\)+x > 0

suy ra \(x^2\)+x+1 luôn luôn  dương với mọi gi trị của x

19 tháng 7 2021

3b : Ta có : \(P=2x\left(x+y-1\right)+y^2+1=2x^2+2xy-2x+y^2+1\)

\(=x^2+2xy+y^2+x^2-2x+1=\left(x+y\right)^2+\left(x-1\right)^2\)

Vậy biểu thức luôn nhận giá trị ko âm với mọi x ; y