Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1) Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến:
a) 9x^2+12x-15
=-(9x^2-12x+4+11)
=-[(3x-2)^2+11]
=-(3x-2)^2 - 11.
Vì (3x-2)^2 không âm với mọi x suy ra -(3x-2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -[(3*x)-2]^2-11 < 0 với mọi giá trị của x.
Hay -9*x^2 + 12*x -15 < 0 với mọi giá trị của x.
b) -5 – (x-1)*(x+2)
= -5-(x^2+x-2)
=-5- (x^2+2x.1/2 +1/4 - 1/4-2)
=-5-[(x-1/2)^2 -9/4]
=-5-(x-1/2)^2 +9/4
=-11/4 - (x-1/2)^2
Vì (x-1/2)^2 không âm với mọi x suy ra -(x-1/2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x
Do đó -11/4 - (x-1/2)^2 < 0 với mọi giá trị của x.
Hay -5 – (x-1)*(x+2) < 0 với mọi giá trị của x.
Bài 2)
a) x^4+x^2+2
Vì x^4 +x^2 lớn hơn hoặc bằng 0 vơi mọi x
suy ra x^4+x^2+2 >=2
Hay x^4+x^2+2 luôn dương với mọi x.
b) (x+3)*(x-11) + 2003
= x^2-8x-33 +2003
=x^2-8x+16b + 1954
=(x-4)^2 + 1954 >=1954
Vậy biểu thức luôn có giá trị dương với mọi giá trị của biến
Ta có \(\left(0,7x^4+0,2x^2-5\right)-\left(-0,3x^4+\frac{1}{5}x^2-8\right)\)= \(0,7x^4+0,2x^2-5+0,3x^4-\frac{1}{5}x^2+8\)
= \(\left(0,7x^4+0,3x^4\right)+\left(0,2x^2-\frac{1}{5}x^2\right)+\left(8-5\right)\)= x4 + 3
Ta có x4 \(\ge\)0 với mọi gt của x => x4 + 3 > 0 với mọi gt của x (đpcm)
\(C=\frac{2\left(x-1\right)^2+1}{\left(x-1\right)^2+2}\)
a, Ta thấy \(\left(x-1\right)^2\ge0\forall x\Rightarrow\hept{\begin{cases}2\left(x-1\right)^2+1\ge1>0\\\left(x-1\right)^2+2\ge2>0\end{cases}}\)
\(\Rightarrow C>0\forall x\)(đpcm)
b, \(C=\frac{2\left(x-1\right)^2+1}{\left(x-1\right)^2+2}=\frac{2\left(x-1\right)^2+4-3}{\left(x-1\right)^2+2}=2-\frac{3}{\left(x-1\right)^2+2}\)
\(C\in Z\Leftrightarrow2-\frac{3}{\left(x-1\right)^2+2}\in Z\)
\(\Leftrightarrow\frac{3}{\left(x-1\right)^2+2}\in Z\)Lại do \(\left(x-1\right)^2+2\ge2\)
\(\Leftrightarrow\left(x-1\right)^2+2\inƯ\left(3\right)=\left\{3\right\}\)
\(\Leftrightarrow\left(x-1\right)^2\in\left\{1\right\}\)
\(\Leftrightarrow x\in\left\{0\right\}\)
....
c, \(C=2-\frac{3}{\left(x-1\right)^2+2}\)
Ta có : \(\left(x-1\right)^2+2\ge2\Rightarrow\frac{3}{\left(x-1\right)^2+2}\le\frac{3}{2}\)
\(\Rightarrow C=2-\frac{3}{\left(x-1\right)^2+2}\ge2-\frac{3}{2}=\frac{1}{2}\)
Dấu "=" xảy ra khi \(x-1=0\Leftrightarrow x=1\)
:33
\(R=3x^2+5\)tại x = -1 ; x = 0 ; x = 3
TH1 : Ta thay đa thức trên có x = -1
\(3.\left(-1\right)^2+5=3.1+5=8\)
TH2 : Ta thay đa thức trên có x = 0
\(3.0^2+5=3.0.5=0\)
TH3 : Ta thay đa thức trên có x = 3
\(3.3^2+5=3.9+5=27+5=32\)
Ta KL đc : R luôn dương với mọi giá trị x
Ta có \(b=x^2-2x+3=x^2-2x+1+2\)
\(=\left(x-1\right)^2+2>0\forall x\)
`x^4+2x^2+1`
`=(x^2)^2 + 2.x^2 .1 + 1^2`
`=(x^2+1)^2 > 0 forall x`.
Ta xét tổng 3 đa thức trên:
\(A+B+C\)
\(=2x^2-5x-x^2+x+3+2x-2\)
\(=x^2-2x+1\)
\(=\left(x-1\right)^2\ge0\left(\forall x\right)\)
G/s A,B,C đều âm => A + B + C âm
=> vô lý
=> Trong 3 biểu thức A,B,C tồn tại ít nhất 1 biểu thức không âm
=> đpcm
Hiển nhiên mẫu lớn hơn 0,ta chứng minh tử >0 là xong ^^
\(3\left(x^2+1\right)+x^2y^2+y^2-2\)
\(=3x^2+3+x^2y^2+y^2-2\)
\(=3x^2+x^2y^2+y^2+1>0\rightarrowđpcm\)
ko hiểu ,mày bị điên à . Anh thách mày giải được đấy !!!! Giải được cho tiền nhé !!!! Bye .
ta có x2+x+1= x2+x+1+x-x= (x+1)2-x
Vì (x+1)2 \(\ge\)0 và (x+1)2>x
nên x2+x+1 luôn luôn dương với mọi giá trị của x
xét x>0 suy ra biểu thúc có gi trị dương
xét x,0
ta có \(x^2\)>0
suy ra \(x^2\)+x > 0
suy ra \(x^2\)+x+1 luôn luôn dương với mọi gi trị của x