Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) ta có : \(A=x\left(x-6\right)+10=x^2-6x+9+1\)
\(=\left(x-3\right)^2+1\ge1>0\forall x\) \(\Rightarrow\) (đpcm)
+) ta có : \(B=x^2-2x+9y^2-6y+3=x^2-2x+1+9y^2-6y+1+1\)
\(=\left(x-1\right)^2+\left(3y-1\right)^2+1\ge1>0\forall x;y\) \(\Rightarrow\) (đpcm)
ta có
B=(x^2-2x+1)+[(3y)^2-6y+1]+1
B=(x-1)^2+(3y-1)^2+1
Mả (x-1)^2+(3y_1)^2 luôn luôn >=0
Vậy B mìn =1khi và chỉ khi x=1 va y=1/3
A = x^2 - 2x.7/2 + 49 / 4 +3/4 =(x - 7/2)^ 2 +3/4 >0
B, Phá ngoặc sau làm tuwowg tự
C dua ve hằng đẳng thức
2. Ta có: P = 2x2 + y2 - 4x - 4y + 10
P = 2(x2 - 2x + 1) + (y2 - 4y + 4) + 4
P = 2(x - 1)2 + (y - 2)2 + 4 \(\ge\)4 \(\forall\)x;y
=> P luôn dương với mọi biến x;y
3 Ta có:
(2n + 1)(n2 - 3n - 1) - 2n3 + 1
= 2n3 - 6n2 - 2n + n2 - 3n - 1 - 2n3 + 1
= -5n2 - 5n = -5n(n + 1) \(⋮\)5 \(\forall\)n \(\in\)Z
A= x^2-6x+10
A=x^2-3x-3x+9+1
A=x(x-3)-3(x-3)+1
A=(x-3)(x-3)+1
A=(x-3)^2+1
Vì (x-3)^2 \(\ge\)0\(\forall x\)
->(x-3)^2+1\(\ge\)1
=>ĐPCM
1. a) \(A=x\left(x-6\right)+10=x^2-6x+9+1=\left(x-3\right)^2+1\)
Vì \(\left(x-3\right)^2\ge0\forall x\)\(\Rightarrow\left(x-3\right)^2+1\ge1\)
hay \(A\ge1\)\(\Rightarrow\)A luôn dương ( đpcm )
b) \(B=x^2-2x+9y^2-6y+3=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)
\(=\left(x-1\right)^2+\left(3y-1\right)^2+1\)
Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(3y-1\right)^2\ge0\forall y\end{cases}}\)
\(\Rightarrow\left(x-1\right)^2+\left(3y-1\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-1\right)^2+\left(3y-1\right)^2+1\ge1\forall x,y\)
hay \(B\ge1\)\(\Rightarrow\)B luôn dương ( đpcm )
Vì \(x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\ge1>0\) với mọi giá trị của \(x\) nên giá trị của biểu thức luôn luôn âm với mọi giá trị khác 0 và khác -3 của \(x\)
\(a;x^2-3x+3=x^2-2\cdot\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}+3\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\Leftrightarrow x^2-3x+3>0\forall x\)
A = x(x - 6) + 10
A = x2 - 6x + 10
A = x2 - 2.3.x + 32 + 1
A = (x - 3)2 + 1 \(\ge1\)
=> A luôn dương
Bạn Kurosaki Akatsu làm ý a đúng rồi đấy!
B = x2 - 2x + 9y2 - 6y + 3
= (x2 - 2x + 1) + (9y2 - 6y + 1) + 1
= (x - 1)2 + [ (3y)2 - 2.3y.1 + 12)] + 1
= (x - 1)2 + (3y - 1)2 + 1
Vì (x - 1)2 và (3y - 1)2 luôn lớn hơn hoặc bằng 0 với mọi x, y
=> (x - 1)2 + (3y - 1)2 + 1 > 0 với mọi xy
Vậy biểu thức luôn dương
a Ta có 4x2 - 4x + 3 = (4x2 - 4x + 1) + 2 = (2x - 1)2 + 2 \(\ge\)2 > 0 (đpcm)
b) Ta có y - y2 - 1
= -(y2 - y + 1)
= -(y2 - y + 1/4) - 3/4
= -(y - 1/2)2 - 3/4 \(\le-\frac{3}{4}< 0\)(đpcm)
a) 4x2 - 4x + 3 = ( 4x2 - 4x + 1 ) + 2 = ( 2x - 1 )2 + 2 ≥ 2 > 0 ∀ x ( đpcm )
b) y - y2 - 1 = -( y2 - y + 1/4 ) - 3/4 = -( y - 1/2 ) - 3/4 ≤ -3/4 < 0 ∀ x ( đpcm )
\(A=x\left(x-6\right)+10=x^2-6x+10\)
\(=\left(x-3\right)^2+1>0\) với mọi x
\(B=x^2-2x+9y^2-6y+3=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)
\(=\left(x-1\right)^2+\left(3y-1\right)^2+1>0\) với mọi x;y