K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2018

Có : 1/a + 1/b + 1/c = 2

<=> ( 1/a + 1/b + 1/c )^2 = 4

<=> 1/a^2 + 1/b^2 + 1/c^2 + 2.(1/ab + 1/bc + 1/ca) = 4

<=> 1/a^2 + 1/b^2 + 1/c^2 = 4 - 2.(1/ab + 1/bc + 1/ca)

                                        = 4 - 2.(a+b+c)/abc

                                        = 4 - 2 = 2

=> ĐPCM

Tk mk nha

13 tháng 1 2016

\(\text{Ta có: }\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}\)

\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{c}{abc}+\frac{a}{abc}+\frac{b}{abc}\right)\)

\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{a+b+c}{abc}\right)\)

Mà \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\text{ và }a+b+c=abc\)nên:

\(2^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{abc}{abc}\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=4-2=2\)

2 tháng 1 2018

????????????????????????????

2 tháng 1 2018

Đề có sai không cậu ơi??

23 tháng 2 2019

Ta có :

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

<=> \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)

<=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{ac}+\frac{2}{bc}=4\)

<=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2c}{abc}+\frac{2b}{abc}+\frac{2a}{abc}=4\)

<=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2a+2b+2c}{abc}=4\)

<=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2\left(a+b+c\right)}{abc}=4\)

<=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2abc}{abc}=4\)

<=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{b^2}+2=4\)

<=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=4-2=2\)

23 tháng 2 2019

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=2^2\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=2^2\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=2^2\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{abc}{abc}=2^2\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)

                            đpcm

30 tháng 12 2017

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=2^2\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)^2+2\left(\frac{1}{a}+\frac{1}{b}\right)\frac{1}{c}+\left(\frac{1}{c}\right)^2=4\)

\(\Leftrightarrow\left(\frac{1}{a}\right)^2+2\frac{1}{a}.\frac{1}{b}+\left(\frac{1}{b}\right)^2+2\left(\frac{1}{ac}+\frac{1}{bc}\right)+\left(\frac{1}{c}\right)^2=4\)

\(\Leftrightarrow\left(\frac{1}{a}\right)^2+\left(\frac{1}{b}\right)^2+\left(\frac{1}{c}\right)^2+2\frac{1}{ab}+2\left(\frac{1}{ac}+\frac{1}{bc}\right)=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{a}{abc}+\frac{b}{abc}+\frac{c}{abc}\right)=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{a+b+c}{abc}\right)=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{a+b+c}{a+b+c}\right)=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=4-2\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)

30 tháng 12 2017

ok thank bn

3 tháng 1 2020

Ta có :

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=4\)

\(\Leftrightarrow2+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=4\)

\(\Leftrightarrow\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}=1\)

\(\Leftrightarrow\frac{a+b+c}{abc}=1\Leftrightarrow a+b+c=abc\left(đpcm\right)\)

9 tháng 7 2019

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{bc+ab+ac}{abc}=2\)

\(\frac{bc+ab+ac}{a+b+c}=2\Leftrightarrow bc+ab+ac=2\left(a+b+c\right)\)

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{bc}+\frac{2}{ab}+\frac{2}{ac}\)( * )

Để \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)thì \(2\left(\frac{1}{bc}+\frac{1}{ab}+\frac{1}{ac}\right)=2\Leftrightarrow\frac{1}{bc}+\frac{1}{ab}+\frac{1}{ac}=1\)

\(\frac{1}{bc}+\frac{1}{ab}+\frac{1}{ac}=\frac{a^2bc+bac^2+ab^2c}{\left(abc\right)^2}=\frac{abc\left(a+b+c\right)}{\left(abc\right)^2}=\frac{a+b+c}{abc}\)

mà a + b + c = abc \(\Rightarrow\frac{1}{bc}+\frac{1}{ab}+\frac{1}{ac}=\frac{abc}{abc}=1\Leftrightarrow\frac{2}{bc}+\frac{2}{ab}+\frac{2}{ac}=2\)

thay \(\frac{2}{bc}+\frac{2}{ab}+\frac{2}{ac}=2\) vào ( * ) ta được \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=4-2=2\left(đpcm\right)\)

9 tháng 7 2019

\(\text{Ta có: }\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=\frac{bc.ac+ab.ac+ab.bc}{ab.bc.ac}\)

\(=\frac{abc.\left(a+b+c\right)}{a^2b^2c^2}=\frac{a+b+c}{abc}=1\left(\text{vì }a+b+c=abc\right)\)

\(\text{Lại có: }\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=4-2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=2\text{ vì }\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=1\text{ từ}\left(1\right)\)

Vậy ...

4 tháng 4 2017

Theo bài ra  ta có : \(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)

\(\frac{a}{ab+a+1}=\frac{a}{ab+a+abc}\left(1=abc\right)=\frac{1}{b+1+bc}\)(chia cả tử lẫn mẫu cho a) (1)

\(\frac{c}{ac+c+1}=\frac{bc}{abc+bc+b}=\frac{bc}{1+bc+b}\)(Nhân cả tử lẫn mẫu cho b) (2)

Do đó ta có : 

\(=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)

\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{1+bc+b}=\frac{1+bc+b}{bc+b+1}=1\)(đpcm)