Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a + b)(a2 + b2)(a4 + b4)(a8 + b8)(a16 + b16)
=1.(a + b)(a2 + b2)(a4 + b4)(a8 + b8)(a16 + b16)
= (a – b) (a + b)(a2 + b2)(a4 + b4)(a8 + b8)(a16 + b16)
= (a2 – b2) (a2 + b2)(a4 + b4)(a8 + b8)(a16 + b16)
= (a4 – b4)(a4 + b4)(a8 + b8)(a16 + b16)
= (a8 – b8)(a8 + b8)(a16 + b16)
= (a16– b16)(a16 + b16)
= a32 – b32
Theo hằng đẳng thức mở rọng
31^10 - 1 = ( 31 - 1 ) (31^9 + 31^8 + 31^7 + ... + 31^1 + 1 )
= 30. (31^9 + 31^8 + ... + 31+ 1 )
Cm cái triong chia hết cho 10 đi
a, Ta có \(5^6 - 10^4 = 5^6-(2.5)^4 =5^6 -2^4.5^4 =5^4 (5^2 -2^4) =5^4 ( 25 -16) =5^4 . 9 \)
với n=0 thì A0=6+25=31 chia hết cho 6
giả sử A đúng với n=k tức là Ak=62K+1+5k+2 chia hết cho 31 ta cần chứng minh A đúng với n=k+1 tức là:
Ak+1=62(k+1)+1+5(k+1)+2 chia hết cho 31. Thật vậy:
Ak+1=62(k+1)+1+5(k+1)+2
=62k+3+5k+3
\(=6^2\cdot6^{2k+1}+5^1\cdot5^{k+1}\)
\(=5\left(6^{2k+1}+5^{k+1}\right)+31\cdot6^{2k+1}\)
\(=5\cdot A_k+31\cdot6^{2k+1}\)
Do AK chia hết cho 31 nêm 5*AK chia hết cho 31,31 chia hết cho 31 nên 31*62k+1
suy ra đpcm
đề sai nhé chị
\(32\text{≡}1\left(mod31\right)\)
\(\Rightarrow32^{507}\text{≡}32^{566}\text{≡}1\left(mod31\right)\)
\(\Rightarrow32^{507}-32^{566}\text{≡}1-1\text{≡}0\left(mod31\right)\)
Vậy...