Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
3+32+33+34+35...+396
=(3+32+33+34+35+36)+(37+38+39+310+311+312)+...+(391+392+393+394+395+396)
=(1+3+32+33+34+35).3+(1+3+32+33+34+35).37+...+(1+3+32+33+34+35).391
=(1+3+32+33+34+35).(3+37+...+391)
=1092.(3+37+...+391)
=7.156.(3+37+...+391) chia hết cho 7
Vậy 3+32+33+34+...+396 chia hết cho 7
a) \(3^5+3^4+3^3\)
\(=3^3\cdot3^2+3^3\cdot3+3^3\cdot1\)
\(=3^3\left(3^2+3+1\right)\)
\(=3^3\cdot13⋮13\) (đpcm)
b) \(2^{10}-2^9+2^8-2^7\)
\(=2^7\cdot2^3-2^7\cdot2^2+2^7\cdot2-2^7\cdot1\)
\(=2^7\left(2^3-2^2+2-1\right)\)
\(=2^7\cdot5⋮5\) (đpcm)
=))
Ta có : 2 + 22 + 23 + ..... + 230
= (2 + 22 + 23) + ..... + (228 + 229 + 230)
= 2.(1 + 2 + 22) + ...... + 228(1 + 2 + 22)
= 2.7 + ..... + 228.7
= 7(2 + ..... + 228) chia hết cho 7
2+22+23+24+...+230=(2+22+23)+(24+25+26)+...+(228+229+230)
= 2(1+2+22)+24(1+2+22)+...+228(1+2+22)=
= (1+2+22)(2+24+...+228)=7.(2+24+...+228) => Chia hết cho 7
Ta có: \(2^{2020}-2^{2017}=2^{2017}\left(2^3-1\right)=7\cdot2^{2017}⋮7\)
Vậy \(2^{2020}-2^{2017}⋮7\)
22020-22017=22017.8-22017=22017(8-1)
=22017.7 chia hết cho 7 (ĐPCM)