Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
goi tong la A
A co so so hang la
(2010-1):1+1= 2010(so)
chia A thanh 670 nhom
A = (3^1+3^2+3^3)+....+(3^2008+3^2009+3^2010)
A = 3(1+3+3^2)+....+3^2008(1+3+3^2)
A = 3.13+.....+3^2008.13
A = 13.(3+...+3^2008)
Vi 13 chia het cho 13 => (3+...+3^2008)chia het cho 13
=> A chia het cho 13
31+32+..........+32009+32010
=(3+32+33)+.........+(32008+32009+32010)
=(3+3.3+3.32)+.............+(32008+32008.3+32008.32)
=3(1+3+32)+..........+32008.(1+3+32)
=3.13+.........+32008.13
=(3+33+............+32008).3 chia hết cho 3
\(1;a,942^{60}-351^{37}\)
\(=\left(942^4\right)^{15}-\left(....1\right)\)
\(=\left(....6\right)^{15}-\left(...1\right)\)
\(=\left(...6\right)-\left(...1\right)=\left(....5\right)⋮5\)
\(b,99^5-98^4+97^3-96^2\)
\(=\left(...9\right)-\left(...6\right)+\left(...3\right)-\left(...6\right)\)
\(=\left(...6\right)-\left(...6\right)=\left(...0\right)⋮2;5\)
\(2;5n-n=4n⋮4\)
a) Ta có:
\(10^{10}=10...0\Rightarrow10^{10}-1=10..0-1=9..99\)
Nên \(10^{10}-1\) ⋮ 9
b) Ta có:
\(10^{10}=10...0\Rightarrow10^{10}+2=10..0+2=10..2\)
Mà: \(1+0+0+...+2=3\) ⋮ 3
Nên: \(10^{10}+2\) ⋮ 3
\(=3.\left(4a+12b\right)\)chia hết cho 3 vì có thừa số là 3.
b)\(2n+7=2n+2+5\)
\(=2.\left(n+1\right)+5\)
=>5 chia hết cho n+1.
n+1 thuộc 1;5
n thuộc 0;4.
Chúc em học tốt^^
Bài 1:
12a + 36b = 12.(a + 3b) = 3.4.(a + 3b) chia hết cho 3
=> 12a + 36b luôn chia hết cho 3 (Đpcm)
Bài 2:
2n + 7 chia hết cho n + 1
=> 2n + 2 + 5 chia hết cho n + 1
=> 2(n + 1) + 5 chia hết cho n + 1
Có 2(n + 1 chia hết cho n + 1
=> 5 chia hết cho n + 1
=> n + 1 thuộc Ư(5)
=> n + 1 thuộc {1; -1; 5; -5}
n + 1 | 1 | -1 | 5 | -5 |
n | 0 | -2 | 4 | -6 |
Mà n thuộc N
=> n thuộc {0; 4}
a,3n+7 chc(mình kí hiệu chc là chia hết cho)n
=>7 chc n
=>n=7;1
muốn xem tiếp thì tk
Giải:
a) A = 21 + 22 + 23 + 24 + .............. + 22010
Ta có :
Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n mà 21 \(⋮\)cả 3 và 7
=> A \(⋮\)cả 3 và 7
Vây A \(⋮\)cả 3 và 7
b) B = 31 + 32 + 33 + 34 + ............... + 22010
Ta có :
Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n
mà 32 \(⋮\)4
Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 39 nằm trong dãy số đó mà 39 \(⋮\)13
=> B \(⋮\)cả 4 và 13
Vậy B \(⋮\)cả 4 và 13
c) C = 51 + 52 + 53 + 54 + ................... + 52010
Ta có :
Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n
mà 54 \(⋮\)6
Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 62 nằm trong dãy số đó mà 62 \(⋮\)31
=> C \(⋮\)cả 6 và 31
Vậy C \(⋮\)cả 6 và 31
d) D = 71 + 72 + 73 + 74 + ...................... + 72010
Ta có :
Trong 1 tích chỉ cần có 1 số chia hết cho n thì tích đó chia hết cho n
mà 72 \(⋮\)8
Vì dãy số trên là các số tự nhiên có khoảng cách là 1 nên 114 nằm trong dãy số đó mà 114 \(⋮\)57
=> D \(⋮\)cả 8 và 57
Vậy D \(⋮\)cả 8 và 57
Học tốt!!!
a ) ( n + 5 ) . ( n + 8 ) = n . n + n . 8 + 5 . n + 5 . 8 = n^2 + 8n + 5n + 40
Nếu n là số lẻ thì n^2 cũng là số lẻ ; 5n cũng là số lẻ . Còn lại đều là số chẵn
Vậy n^2 + 5n sẽ thành số chẵn .
Chẵn + chẵn + chẵn = chẵn .
Mà số chẵn thì chi hết cho 2 .
Nếu n là số chẵn thì n^2 cũng là số chẵn ; 5n cũng là số chẵn . Vậy tổng trên tất cả đều là số chẵn
=> tổng chẵn và chia hết cho 2 .
b ) n . ( n + 4 ) . ( n + 8 ) = ( n . n + n . 4 ) . ( n . n + n . 8 ) = ( n^2 + 4n ) . ( n^2 + 8n ) = n^2 ( 8n + 4n ) = n^2 . 12n
Vì trong tích trên có 12 = 3 . 4 nên tích trên chia hết cho 3 kéo theo n . ( n + 4 ) . ( n + 8 ) chia hết cho 3 .
Bài 2 :
a ) { x^2 - [ 6^2 - ( 8^2 - 9.7^2 )^3 - 7.5 ]^3 - 5 . 3 }^3 = 1
=> x^2 - [ 6^2 - ( 8^2 - 9.7^2 )^3 - 7.5 ]^3 - 5.3 = 1
x^2 - [ 36 - ( 64 - 9.49 )^3 - 7.5 ]^3 - 5.3 = 1
x^2 - [ 36 - ( 64 - 441 )^3 - 7.5 ]^3 - 5.3 = 1
x^2 - [ 36 - ( -47897473 ) - 7.5 ]^3 - 5.3 = 1
x^2 - [ 47897509 - 7.5 ]^3 - 5.3 = 1
Phần lũy thừa này máy mình không tính được .
b ) 5^x-2 - 3^2 = 2^4
5^x-2 - 9 = 16
5^x-2 = 16 + 9
5^x-2 = 25
5^x-2 = 5^2
=> x - 2 = 2
x = 2 + 2
x = 4