Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
mình nghĩ 2016 và 2017 là 2 số tự nhiên liên tiếp
...............2014 và 2015 cũng là 2 số tự nhiên liên tiếp
mà trong 2 số tự nhiên liên tiếp thì sẽ chia hết cho 2
mong chút đóng góp ý kiến của mình giúp bạn vươn xa trong con đường học tập
CHÚC MAY MẮN
10^2017+10^2016+10^2015
=10^2015.(10^2+10+1)=10^2015.111
=10^2014.10.111=10^2014.2.5.111=10^2014.2.555 chia hết cho 555
10^2017 + 10^2016 + 10^2015
= 10^2015(10^2+10+1)
= 10^2015.111
= 10^2014.10.111
= 10^2014.2.5.111
= 10^2014.2.555
mà 555 chia hết cho 555
<=> 10^2014.2.555 chia hết 555
vậy( 10^2017 +- 10^2016 + 10^2015) chia hết cho 555
a, 10615 + 8 không chia hết cho 2 vì 8 ⋮ 2 nhưng 10615 không chia hết cho 2
10615 + 8 không chia hết cho 9 vì 1 + 6 + 1 + 5 + 8 = 21 không chia hết cho 9
c, B = 102010 - 4
10 \(\equiv\) 1 (mod 3)
102010 \(\equiv\) 12010 (mod 3)
4 \(\equiv\) 1(mod 3)
⇒ 102010 - 4 \(\equiv\) 12010 - 1 (mod 3)
⇒ 102010 - 4 \(\equiv\) 0 (mod 3)
⇒ 102010 - 4 \(⋮\) 3
ta không quan tâm đến số mũ (tại vì cả ba đều cùng số mũ là 2017)
vì 2016+2015+2009 bằng 6040 mà 6040 lại chia hết cho 10
suy ra 2016^2017+2015^2017+2009^2017 chia hết cho 10 (điều cần chứng minh)
\(2016^{2017}\)có tận cùng =6
\(2015^{2017}\)có tận cùng =5
\(2009^{2017}\)có tận cùng =9
(6+5+9)=20=> A chia hết cho 10
{lập luận @ .. không quan tâm đến mũ là sai? bạn thử thay số là số chẵn xem xe biết}
Ta có \(A=4+2^2+2^3+...+2^{2016}\)
\(A=2^2+2^2+2^3+...+2^{2016}\)
Ta có \(2^2+2^2=2^2.2=2^3\)
\(2^3+2^3=2^3.2=2^4\)
..........................................
Tương tự với các số hạng còn lại ta được
\(A=4+2^2+2^3+...+2^{2016}\)
\(A=2^{2016}+2^{2016}=2^{2016}.2=2^{2017}\)chia hết cho \(2^{2017}\)
Vậy A chia hết cho \(2^{2017}\)
Có : 2015^n có tận cùng là 5
2^2015 = 2^3.2^2012 - 8.(2^4)^503 = 8.16^503 = 8. ....6 = ....8
Vì m^2 là số chính phương nên m^2 ko có tận cùng là 7
=> A ko có tận cùng là : 0 ( vì 5+8+7 = 20 )
=> A ko chia hết cho 10
=> đpcm
Tk mk nha