K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NH
0
OC
0
9 tháng 1 2021
vì n là số nguyên tố và n >2 nên n chỉ có dạng 3k+1 hoặc 3k+2
TH1: với n có dạng 3k+1 thì ta được
\(2^{n-1}=2^{3k+1-1}=2^{3k}=6^k\) mà \(6^k\) chia hết cho 2 ; 3 ; 6
\(\Rightarrow2^{n-1}\) là số chính phương (1)
TH2: với n có dạng 3k+2 thì ta được:
\(2^{3k+2+1}=2^{3k+3}=2^{3.\left(k+1\right)}=\left(2^3\right)^{2k+1}=8^{2k+1}\)
Mà \(8^{2k+1}\) chia hết cho 2: 4: 8
\(\Rightarrow2^{n+1}\) là số chính phương (2)
Từ (1) và (2) ta thấy \(2^{n-1}\) và \(2^{n+1}\) không thể đồng thời là số nguyên tố với n >2
Số 2012 không chia hết cho 3 (vì tổng các chữ số của nó = 5 không chia hêt cho 3).
=> 20122013 cũng không chia hết cho 3.
Xét 3 số: 20122013 - 1, 20122013 , 20122013 + 1. Đây là ba số tự nhiên liên tiếp lơn hơn 3. => Trong 3 số liên tiếp bao giờ cũng có 1 số chia hết cho 3.
Vì số ở giữa (số 20122013) không chia hết cho 3 nên hai số còn lại phải có 1 số chia hết cho 3
=> Hai số còn lại không thể cùng là số nguyên tố được
Số 2012 không chia hết cho 3 (vì tổng các chữ số của nó = 5 không chia hêt cho 3).
=> 20122013 cũng không chia hết cho 3.
Xét 3 số: 20122013 - 1, 20122013 , 20122013 + 1. Đây là ba số tự nhiên liên tiếp lơn hơn 3. => Trong 3 số liên tiếp bao giờ cũng có 1 số chia hết cho 3.
Vì số ở giữa (số 20122013) không chia hết cho 3 nên hai số còn lại phải có 1 số chia hết cho 3
=> Hai số còn lại không thể cùng là số nguyên tố .
=>ĐPCM