Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
p = 2 => p + 10 = 12 là hợp số => loại
p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn
Nếu p > 3 , p có thể có dạng
+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1
+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2
Vậy p = 3
b)
p=2=>6+p=6+2=8 là hợp số=>loại p = 2
p=3
=>6+p=6+3=9 là hợp số =? loại p=3
p=5
=>p+2=5+2=7
p+6=5+6=11
p+8=5+8=13
p+14=5+14=19
đều là snt => p =5 thỏa mãn
nếu p>5
=>p có dạng :
p=5k+1
=>p+14=5k+1+14=5k+15 =5k+5.3=5(k+3) chia hết cho 5 là hợp số => loại p=5k+1
p=5k+2
=>p+8=5k+2+8=5k+10=5k+2.5=5(k+2) chia hết cho 5 là hợp số => loại p=5k+2
Vậy p=5
2) Vì p là số nguyên tố nên ta xét các trường hợp sau:
a) Với p = 2 thì p + 10 = 2 + 10 = 12 là hợp số (loại), tương tự với p + 20 cũng là hợp số.
Với p = 3 thì p + 10 = 3 + 10 = 13 là số nguyên tố (nhận); p + 20 = 3 + 20 = 23 là số nguyên tố (nhận)
Vì p là số nguyên tố và p > 3 nên p có dạng 3k + 1; 3k + 2
Với p = 3k + 1 => p + 10 = 3k + 1 + 10 = 3k + 11
không có số nào đâu bạn vì theo khái niệm thì khi nhân một số nguyên tố với một số nguyên tố thì nó sẽ là hợp số vì khi đó nó đã có trên 2 ước rồi bạn
đúng quá đúng ko các bạn tick cho mình nhé
giả sử p<q<r
+) Nếu p=3
+) Nếu q=3
Xét số tự nhiên a không chia hết cho3 =>a=3k+1 hoặc a=3k+2 (k thuộc N*)
-với a=3k+1
-với a=3k+2
=>với a không chia hết cho 3
=>a2 không chia hết cho 3 => a2 chia 3 dư 1 (tự chứng minh)
do đó p2;q2;r2 chia 3 dư 1
=>p2+q2+r2 chia hết cho 3 mà p2+q2+r2>3
=>p2+q2+r2 là hợp số
Vậy p=3;q=5;r=7
do p là số nguyên tố =>p>=2
xét p=2 => p+10 =12 (không là số nguyên tố)
xét p=3 => p+10 =13 (là số nguyên tố ) ,p+14 =17 (là số nguyên tố)
=> p=3 thỏa mãn đề bài
xét p là số nguyên tố >3 => p không chia hết cho 3 . nếu p chia 3 dư 1
=> p+14 chia hết cho 3 mà p+14 >3 => p+14 không là số nguyên tố => vô lý
nếu p chia 3 dư 2=> p+10 chia hết cho 3 mà p+10 >3 => p+10 không là số nguyên tố
vậy với p là số nguyên tố >3 thì p không thỏa mãn đề bài
p=3 là số nguyên tố duy nhất thỏa mãn đề bài , duyệt nha
a, +, p = 2
=> p + 2 = 2 + 2 = 4 ( là hợp số ) => loại
+, p = 3
=> p + 2 = 3+ 2 = 5 ( là số nguyên tố )
p + 10 = 3+ 10 = 13 ( là số nguyên tố )
+, p > 3 => p có dạng 3k+1 hoặc 3k+2
TH1: p = 3k+1
=> p + 2 = 3k + 1 + 2 = 3k + 3 \(⋮\)3 ( là hợp số ) => loại
TH2: p= 3k + 2
=> p + 10 = 3k + 2 + 10 = 3k + 12 \(⋮\)3 ( là hợp số ) => loại
Vậy p = 3
b, +, p = 2
=> p + 10 = 2 + 10 = 12 ( là hợp số ) => loại
+, p = 3
=> p + 10 = 3+ 10 = 13 ( là số nguyên tố )
p + 20 = 3+ 20 = 23 ( là số nguyên tố )
+, p > 3 => p có dạng 3k+1 hoặc 3k+2
TH1: p = 3k+1
=> p + 20 = 3k + 1 + 20 = 3k + 21 \(⋮\)3 ( là hợp số ) => loại
TH2: p= 3k + 2
=> p + 10 = 3k + 2 + 10 = 3k + 12 \(⋮\)3 ( là hợp số ) => loại
Vậy p = 3