Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy:
1/22<1/1*2; 1/3^2<1/2*3;...;1/2^11<1/10*11
=> tổng đó nhỏ hơn 1/1*2+1/2*3+...+1/10*11
= 1-1/2+1/2-1/3+...+1/10-1/11
=1-1/11<1
=> tổng đó nhỏ hơn 1
\(1+^2+4^3+......+4^{10}+4^{11}\)
\(=\left(1+4\right)+\left(4^2+4^3\right)+.....+\left(4^{10}+4^{11}\right)\)
Nhận xét : Tất cả các tổng trong tổng trên đều chia hết cho 5. Vậy tổng \(1+^2+4^3+......+4^{10}+4^{11}\) chia hết cho 5
\(7+7^2+7^3+.....+7^{102}\)
\(=\left(7+7^2\right)+\left(7^3+7^4\right)+....+\left(7^{101}+7^{102}\right)\)
Nhận xét : Tất cả các tổng trong tổng trên đều chia hết cho 8. Vậy tổng \(7+7^2+7^3+.....+7^{102}\) chia hết cho 8
a, \(1+4+4^2+...+4^{11}\)
Đặt : \(S=1+4+4^2+...+4^{11}\)
Ta có : Số số hạng của dãy số S chính là số số hạng của dãy số cách đều từ 0 --> 11 mỗi số cách nhau 1 đơn vị
=> Số số hạng của S là : \(\frac{11-0}{1}+1=12\) ( số hạng )
Vậy ta có số nhóm là :
12 : 2 = 6 ( nhóm ) :
\(S=\left(1+4\right)+\left(4^2+4^3\right)+...+\left(4^{10}+4^{11}\right)\) ( 6 nhóm )
\(\Rightarrow S=\left(1+4\right)+4^2\left(1+4\right)+...+4^{10}\left(1+4\right)\)
\(\Rightarrow S=1.5+4^2.5+...+4^{10}.5\)
\(\Rightarrow S=\left(1+4^2+...+4^{10}\right).5\)
Mà : \(1+4^2+...+4^{10}\in N\Rightarrow S⋮5\)
---------
Tương tự để chứng minh S chia hết cho 21 ta có số nhóm là :
12 : 3 = 4 ( nhóm )
\(S=\left(1+4+4^2\right)+...+\left(4^9+4^{10}+4^{10}\right)\) ( 4 nhóm )
\(\Rightarrow S=\left(1+4+4^2\right)+...+4^9\left(1+4+4^2\right)\)
\(\Rightarrow S=1.21+...+4^9.21\)
\(\Rightarrow S=\left(1+...+4^9\right).21\)
Mà : \(1+...+4^9\in N\Rightarrow S⋮21\)
b, \(7+7^2+7^3+...+7^{102}\)
Đặt : \(M=7+7^2+7^3+...+7^{102}\)
Ta có : Số số hạng của dãy số M chính là số số hạng của dãy số cách đều từ 1 --> 102 mỗi số cách nhau 1 đơn vị
=> Số số hạng của M là : \(\frac{102-1}{1}+1=102\) ( số hạng )
Vậy có tất cả số nhóm là :
102 : 2 = 51 ( nhóm )
\(M=\left(7+7^2\right)+\left(7^3+7^4\right)+...+\left(7^{101}+7^{102}\right)\)
\(\Rightarrow M=\left(7+7^2\right)+7^2\left(7+7^2\right)+...+7^{100}\left(7+7^2\right)\)
\(\Rightarrow M=1.56+7^2.56+...+7^{100}.56\)
\(\Rightarrow M=\left(1+7^2+...+7^{100}\right).56\)
Vì : 56 = 8.7 . Mà : \(1+7^2+...+7^{100}\in N\Rightarrow M⋮8\)
a, S = 2 + 22 + 23 + 24 + ... + 299 + 2100. 2S = 22 + 23 + 24 + 25 + ... + 2100 + 2101 => 2S - S = S = (22 + 23 + 24 + 25 + ... + 2100 + 2101) - (2 + 22 + 23 + 24 + ... + 299 + 2100) = 2101 - 2. Vậy S = 2101 - 2. b, S = 2 + 22 + 23 + 24 + ... + 299 + 2100 = (2 + 22) + (23 + 24) + ... + (299 + 2100) = 2.(1 + 2) + 23.(1 + 2) + ... + 299.(1 + 2) = (1 + 2).(2 + 23 + ... + 299) = 3.(2 + 23 + ... + 299) => S ⋮ 3. Vậy S ⋮ 3 (đpcm)
\(Ta\)có :
\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{20^2}< \frac{1}{19.20}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{20^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{19.20}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}\)
\(\Rightarrow A< 1-\frac{1}{20}< 1\left(Đpcm\right)\)
Chúc bạn học tốt !!!
Có : 126 chia hết cho 3, 213 chia hết cho 3
Để được M chia hết cho 3 thì x phải chia hết cho 3
Hay gọi là 3k ( k thuộc N)
2.
Hình như đầu bài bài 2 sai
giup minh lam nhanh nhanh len minh can gap ai la dung minh se k cho
\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{4010^2}\)
= \(\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2005^2}\right)\)
< \(\frac{1}{2^2}.\left(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2004.2005}\right)\)
\(=\frac{1}{2^2}.\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2004}-\frac{1}{2005}\right)\)
= \(\frac{1}{2^2}.\left(2-\frac{1}{2005}\right)=\frac{1}{2}-\frac{1}{4\left(2005\right)}< \frac{1}{2}\)
Vậy \(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{4010^2}< \frac{1}{2}\)
ai lam day du dau tien minh se k cho nha
minh can gap lam