Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^{15}+16^5=2^{15}+2^{4.5}=2^{15}+2^{20}=2^{15}\left(2^5+1\right)=2^{15}.33=2^{15}.3.11\)
Chia hết cho cả 3 và 11
215+165=215+24.5=215+220=215(25+1)=215.33=215.3.11 chia hết cho cả 3 và11
A có (9-0) + 1 = 10 số hạng.
Mỗi số hạng 11n đều có tận cùng là 1. Nên A có tận cùng là 10*1 là 0 => A chia hết cho 5. đpcm
Ta thấy tổng A gồm 10 số hạng, mỗi số hạng có tận cùng là 1 vì 11 mũ bao nhiêu lên vẫn có tận cùng là 1
=> A có tận cùng là 1 x 10 hay A có tận cùng là 0
=> A chia hết cho 5 (đpcm)
122n+1+112+n=144n.12+11n.121
144 đồng dư với 11(mod 133)
=>144n đồng dư với 11n(mod 133)
=>144n.12+11n.121 đồng dư với 11n.12+11n.121
=11n.133 đồng dư với 0(mod 133)
=>122n+1 + 11n+2 với 0(mod 133)
=>122n+1+11n+2 chia hết cho 133
=>đpcm
122n+1-11n+2 chia hết cho 133. Đề bài sai. VD n=1 thì 114 ko chia hết cho 133
a) Ta có:
\(8^5+2^{11}=34816\)
Phân tích ra thừa số nguyên tố số bằng: \(34816=2^{11}.17\)mà \(17⋮17\Leftrightarrow2^{11}.17⋮17\)
\(\Leftrightarrow34816⋮17\Leftrightarrow\left(8^5+2^{11}\right)⋮17\)
b) \(8^7-2^{18}=1835008\)
Phân tích ra thừa số nguyên tố số bằng: \(1835008=2^{18}.7=2^{17}.14\)mà \(14⋮14\Leftrightarrow2^{17}.14⋮14\Leftrightarrow2^{18}.7⋮14\)
\(\Leftrightarrow1835008⋮14\Leftrightarrow\left(8^7-2^{18}\right)⋮14\)
Lời giải : a/ Vì 85= (23)5 = 215 nên Ta có: 85+211 = 215+211 = 211.(24+1) = 211.17 chia hết cho 17
b/ Vì 87 = (23)7 = 221 nên 87- 218 = 221 – 218 = 218(23 – 1) = 218.7 = 217.14 chia hết cho 14
c/ Vì (9x + 13y) chia hết cho 19 nên 2.(9x + 13y) chia hết cho 19.
Tức là (18x + 26y) chia hết cho 19 . Ta có 18x + 26y = 19x – x + 19y + 7y = 19(x+y) +(7y – x)
chia hết cho 19, mà 19(x+y) chia hết cho 19 nên (7y – x) chia hết cho 19
Chúc Mạnh Châu học tập ngày càng giỏi nhé. Học thật tốt lý thuyết, nhớ công thức và vận dụng công thức linh hoạt.
Ta có:
\(19\equiv9\left(mod10\right)\)
\(11=1\left(mod10\right)\)
\(\Rightarrow19^{2005}+11^{2004}⋮10\)
\(7^{2018}+7^{2017}-7^{2016}\)
\(=7^{2016}\left(7^2+7-1\right)=7^{2016}.55⋮11\)
\(\Rightarrowđpcm\)
\(7^{2018}+7^{2017}-7^{2016}\)
\(=7^{2016}\left(7^2+7-1\right)\)
\(=7^{2016}.55⋮11\)
\(\Rightarrow\) đpcm
Câu 4:
Để A là số nguyên thì \(\sqrt{x}-3+4⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3\in\left\{1;-1;2;-2;4;-4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{4;2;5;1;7\right\}\)
hay \(x\in\left\{16;4;25;1;49\right\}\)
\(11^{18}+11^{17}-11^{16}.2\)
=\(\left(11^{18}-11^{16}\right)+\left(11^{17}-11^{16}\right)\)
=\(11^{16}\left(11^2-1\right)+11^{16}\left(11-1\right)\)
=\(11^{16}.120+11^{16}.10\)
=\(11^{16}.130\) chia hết cho 130