K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2016

ra gần hết rồi để ghi ra cho, 

28 tháng 6 2016

đặt a-b = x, b-c = y, c-a = z

(a-b)^2+(b-c)^2+(c-a)^2=(a+b-2c)^2+(b+c-2a)^2+(c+a-2b)^2

<=> x^2+y^2+z^2=(y-z)^2+(z-x)^2+(x-y)^2

tới đây suy ra đpcm là đc

4 tháng 9 2016

giả sử: a4 + b4+c4+1 > 2a( ab2-a+c+1) 
<=> a^4-2(ab)^2 + b^4 + a^2-2ac+c^2 + a^2-2a+1>0 ( bạn chuyển vế rùi tách ra như mình nha) 
<=> (a^2-b^2)^2 + (a-c)^2 + (a-1)^2 >0 (1) 
nhận thấy (a^2-b^2)^2>=0 
(a-c)^2>=0 
(a-1)^2 >= 0 
=> (1) luôn đúng

NV
29 tháng 2 2020

Hai BĐT đều có dấu "=" xảy ra

a/ \(\Leftrightarrow x^7-x^4y^3+y^7-x^3y^4\ge0\)

\(\Leftrightarrow x^4\left(x^3-y^3\right)-y^4\left(x^3-y^3\right)\ge0\)

\(\Leftrightarrow\left(x^4-y^4\right)\left(x^3-y^3\right)\ge0\)

\(\Leftrightarrow\left(x+y\right)\left(x^2+y^2\right)\left(x^2+xy+y^2\right)\left(x-y\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(x=y\)

b/ Áp dụng câu a:

\(VT\le\sum\frac{a^2b^2}{a^3b^3\left(a+b\right)+a^2b^2}=\sum\frac{1}{ab\left(a+b\right)+1}=\sum\frac{abc}{ab\left(a+b\right)+abc}=\sum\frac{c}{a+b+c}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

18 tháng 9 2016

\(a^2+b^2+c^2+\frac{21}{4}=\left(a^2+4\right)+\left(b^2+\frac{1}{4}\right)+\left(c^2+1\right)\)

Mà theo bđt Cauchy : \(a^2+4\ge2\sqrt{4a^2}=4a\) ; \(b^2+\frac{1}{4}\ge2\sqrt{b^2.\frac{1}{4}}=b\) ; \(c^2+1\ge2\sqrt{c^2.1}=2c\)

Cộng các bđt trên theo vế được \(a^2+b^2+c^2+\frac{21}{4}\ge4b+b+2c\) (đpcm)

8 tháng 9 2016

e ms lp 7 thoy ạ...bài này e chả hỉu j heets~~hic hic^^

\(a^4+b^4+c^4=2a^2b^2+2a^2c^2+2b^2c^2\)

\(\Leftrightarrow a^4+b^4+c^4-2a^2b^2-2a^2c^2-2b^2c^2=0\)

\(\Leftrightarrow\left(a^4-2a^2b^2+b^4\right)+\left(b^4-2b^2c^2+c^4\right)+\left(c^4-2c^2a^2+a^4\right)-a^4-b^4-c^4=0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(c^2-b^2\right)^2+\left(c^2-a^2\right)^2-a^4-b^4-c^4=0\)

\(\Leftrightarrow\left(a-b\right)^2c^2+a^2\left(b+c\right)^2+b^2\left(c+a\right)^2-a^4-b^4-c^4=0\)

\(\Leftrightarrow c^2\left[\left(a-b\right)^2-\left(a+b\right)^2\right]+a^2\left[\left(b+c\right)^2-a^2\right]+b^2\left[\left(c+a\right)^2-b^2\right]=0\)

\(\Leftrightarrow c^2\left[\left(a-b\right)^2-\left(a+b\right)^2\right]+a^2\left[\left(b+c\right)^2-\left(c-b\right)^2\right]+b^2\left[\left(c+a\right)^2-\left(c-a\right)^2\right]=0\)

\(\Leftrightarrow-4abc^2+4a^2bc+4ab^2c=0\)

\(\Leftrightarrow4abc\left(a+b-c\right)=0\)

\(\Leftrightarrow0=0\)(luôn đúng)

=>đpcm

8 tháng 8 2016

1) A= 2a2b2+2a2c2+2b2c2-a^4-b^4-c^4

       = 2a2b2+2a2c2+2b2c2-(a^4+b^4+c^4)

       =  2a2b2+2a2c2+2b2c-[(a2+b2+c2)2+2a2b2+2a2c2+2b2c)

       = 2a2b2+2a2c2+2b2c2 -(a2+b2+c2)2-2a2b2-2a2c2-2b2c2

         = (a2+b2+c2)>0

8 tháng 8 2016

\(A=5n^3+15n^2+10n\)

\(=5n\left(n^2+2\times n\times\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+2\right)\)

\(=5n\left[\left(n+\frac{3}{2}\right)^2-\frac{1}{4}\right]\)

\(=5n\left[\left(n+\frac{3}{2}\right)^2-\left(\frac{1}{2}\right)^2\right]\)

\(=5n\left(n+\frac{3}{2}+\frac{1}{2}\right)\left(n+\frac{3}{2}-\frac{1}{2}\right)\)

\(=5n\left(n+2\right)\left(n+1\right)\)

Tích của 3 số nguyên liên tiếp chia hết cho 6

=> A vừa chia hết cho 6 vừa chia hết cho 5

=> A chia hết cho 30 (đpcm)