Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi 2 số tự nhiện liên tiếp là n; n+1
Ta có:
Nếu n có dạng 2k thì n.(n+1)
= 2k.(2k+1) chia hết cho 2 (vì 2k chia hết cho 2)
Nếu n có dạng 2k + 1 thì n.(n+1)
= (2k+1).(2k+1+1)
= (2k+1).(2k+2) chia hết cho 2 (vì 2k+2 chia hết cho 2)
b) Gọi 3 số tự nhiên liên tiếp là n;n+1;n+2
Ta có:
Nếu n có dạng 3k thì n.(n+1).(n+2)
= 3k.(3k+1).(3k+2) chia hết cho 3 (vì 3k chia hết cho 3)
Nếu n có dạng 3k+1 thì n.(n+1).(n+2)
= (3k+1).(3k+1+1).(3k+2+1)
= (3k+1).(3k+2).(3k+3) chia hết cho 3 vì (3k+3 chia hết cho 3)
Nếu n có dạng 3k+2 thì n.(n+1).(n+2)
= (3k+2).(3k+2+1).(3k+2+2)
= (3k+2).(3k+3).(3k+4) chia hết cho 3 (vì 3k+3 chia hết cho 3)
a . Ta có : Vì hai số liên tiếp chiaheets cho 2
=> số lẻ x số chẵn sẽ chia hết cho 2
vì 1 số chẵn x bất kì số nào cũng là số chẵn
a ) vì 2 số tự nhiên liên tiếp nhau sẽ có một số chẵn và một số lẽ ( Ví dụ : 2 và 3 _ 7 và 8_12345 và 12346 )
và tích của một số chẵn và một số lẽ phải là một số chẵn ( Ví dụ : 2 x 3 = 6_ 7 x 8 = 56 ........)
mà một số chẵn thì luôn luôn chia hết cho 2
suy ra : tích của hai số tự nhiên liên tiếp nhau chia hết cho 2 ( điều phài chứng minh )
a. một trong hai số là chẵn thì tích của chúng sẽ là một số chẵn.
mk làm được mỗi câu này. sai thì thôi
a)trong 2 số tự nhiên liên tiếp,1 số chia hết cho 2.
vậy:tích 2 số tự nhiên liên tiếp chia hết cho 2.
b)trong 3 số tự nhiên liên tiếp,có ít nhất 1 số chia hết cho 2 và chia hết cho 3.
vậy:tích 3 số tự nhiên liên tiếp chia hết cho 6.
ko hiêủ chỗ nào thì chat vs mik.k và kb nha!
ousbdl
jvdajnvjl
nsdg
ouhqer
kgkrebvjdsjb
vq
wjkgb
Fbovafbeuonasf
b) Giar sử gọi 3 số tự nhiên liên tiếp là: a, a+1,a+2.
Theo đề bài ta có :
A = a(a + 1) (a + 2) + 6
Ta có 6 = 3x2 mà ( 3,2) = 1
A + 2 vì trong A số tự nhiên liên tiếp có một số chia hết cho 2
A + 3 vì trong A số tự nhiên liên tiếp có một số chia hết cho 3
Vậy tích của 3 STN liên tiếp chia hết cho 6.
Ta có trong hai số tự nhiên liện tiếp thì lúc nào cũng có một số chẵn và một số lẻ số chẵn đó sẽ chia hết cho 2 (đpcm)
b, 3 số tự nhiên liên tiếp sẽ có dangh 3k;3k+1;3k+2(với k thuộc N)
Tích của 3 số đó là : 3k + 3k+1 +3k +2 = 3.(3k+3) chia hết cho 3( đpcm)
a)Gọi 2 số tự nhiên liên tiếp đó là a và b
Do là 2 STN liên tiếp nên a hoặc b sẽ là số chẵn
=> ab chia hết cho 2
Vậy.............................
b) Gọi 3 số tự nhiên liên tiếp là 3k; 3k+1; 3k+2 ( k \(\in\) N)
Mà 3k luôn chia hết cho 3
=> 3k(3k+1)(3k+2) luôn chia hết cho 3
Vậy......................................
a)Gọi 2 số tự nhiên liên tiếp đó lần lượt là a;a+1
Ta có:
a(a+1) chia hết 2 ( vì a ; a+1 là số liên tiếp nên có 1 số là số chẵn và 1 số là số lẻ)
b)Vì n chia hết n nên tích n số tự nhiên liên tiếp chia hết b
c,d ....
a, Vì trong 2 số tự nhiên liên tiếp luôn có 1 số chẵn nên tích 2 số này là số chẵn
Mà số chẵn luôn chia hết cho 2
Nên tích của 2 số tự nhiên liên tiếp luôn chia hết cho 2
b,Vì trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 nên tích 3 số này chia hết cho 3
trong 2 số tự nhiên liên tiếp luôn có 1 số chia hết cho 2
=> tích của 2 số tự nhiên liên tiếp chia hết cho 2 (đpcm)
vậy_
phần b tt