K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2018

a ) vì 2 số tự nhiên liên tiếp nhau sẽ có một số chẵn và một số lẽ ( Ví dụ : 2 và 3 _ 7 và 8_12345 và 12346 ) 

     và tích của một số chẵn và một số lẽ phải là một số chẵn ( Ví dụ : 2 x 3 = 6_ 7 x 8 = 56 ........)

     mà một số chẵn thì luôn luôn chia hết cho 2 

    suy ra : tích của hai số tự nhiên liên tiếp nhau chia hết cho 2 ( điều phài chứng minh ) 

23 tháng 12 2018

a, bởi vì trong 2 số tự nhiên liên tiếp thì chắc chắn có 1 số chẵn => chia hết cho 2.

2 tháng 10 2016

a . Ta có : Vì hai số liên tiếp chiaheets cho 2 

=> số lẻ x số chẵn sẽ chia hết cho 2

vì 1 số chẵn x bất kì số nào cũng là số chẵn

13 tháng 10 2018

Gọi 2 số nguyên liên tiếp là:  và  a+1

Tích của chúng là:  A  =  a(a+1)

  • Nếu:  a = 2k thì chia hết cho 2  
  • Nếu:  a = 2k+1 thì:  a+1 = 2k+2   chia hết cho 2  =>  A  chia hết cho 2

=>  đpcm

31 tháng 10 2017

Ta có  trong hai số tự nhiên liện tiếp thì lúc nào cũng có một số chẵn và một số lẻ số chẵn đó sẽ chia hết cho 2 (đpcm)
b, 3 số tự nhiên liên tiếp sẽ có dangh 3k;3k+1;3k+2(với k thuộc N)
      Tích của 3 số đó là : 3k + 3k+1 +3k +2 = 3.(3k+3) chia hết cho 3( đpcm)

31 tháng 10 2017

a)Gọi 2 số tự nhiên liên tiếp đó là a và b 

Do là 2 STN liên tiếp nên a hoặc b sẽ là số chẵn

=> ab chia hết cho 2

 Vậy.............................

b) Gọi 3 số tự nhiên liên tiếp là 3k; 3k+1; 3k+2  ( k \(\in\) N)

 Mà 3k luôn chia hết cho 3

=> 3k(3k+1)(3k+2) luôn chia hết cho 3

     Vậy......................................

10 tháng 7 2015

a) Gọi 2 số tự nhiện liên tiếp là n; n+1 

Ta có: 

Nếu n có dạng 2k thì n.(n+1) 

= 2k.(2k+1) chia hết cho 2 (vì 2k chia hết cho 2)

Nếu n có dạng 2k + 1 thì n.(n+1) 

= (2k+1).(2k+1+1)

= (2k+1).(2k+2) chia hết cho 2 (vì 2k+2 chia hết cho 2)

b) Gọi 3 số tự nhiên liên tiếp là n;n+1;n+2 

Ta có: 

Nếu n có dạng 3k thì n.(n+1).(n+2) 

= 3k.(3k+1).(3k+2) chia hết cho 3 (vì 3k chia hết cho 3)

Nếu n có dạng 3k+1 thì n.(n+1).(n+2) 

= (3k+1).(3k+1+1).(3k+2+1)

= (3k+1).(3k+2).(3k+3) chia hết cho 3 vì (3k+3 chia hết cho 3) 

Nếu n có dạng 3k+2 thì n.(n+1).(n+2) 

= (3k+2).(3k+2+1).(3k+2+2)

= (3k+2).(3k+3).(3k+4) chia hết cho 3 (vì 3k+3 chia hết cho 3) 

 

10 tháng 7 2015

Cứ li ke ủng hộ chú ấy mỏi tay :D

4 tháng 12 2021

ousbdl

jvdajnvjl

nsdg

ouhqer

kgkrebvjdsjb

vq

wjkgb

Fbovafbeuonasf

2 tháng 8 2023

a, Gọi 3 số tự nhiên liên tiếp là n; n+1 và n+2

Tổng chúng: n+(n+1)+(n+2)= 3n+3\(⋮\) 3 \(\forall n\in N\) (đpcm)

b, Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3

Tổng chúng: \(n+\left(n+1\right)+\left(n+2\right)+\left(n+3\right)=4n+6⋮̸4\forall n\in N\left(Vì:4n⋮4;6⋮̸4\right)\left(đpcm\right)\)

 

2 tháng 8 2023

c, Hai số tự nhiên liên tiếp là k và k+1

Tích chúng: k(k+1) . Nếu k chẵn thì k+1 lẻ => Tích chẵn, chia hết cho 2

Nếu k lẻ thì k+1 chẵn => Tích chẵn, chia hết cho 2

(ĐPCM)

d, Ba số tự nhiên liên tiếp là m;m+1 và m+2

Tích chúng: m(m+1)(m+2) 

+) TH1: Nếu m chia hết cho 3 => Tích 3 số chia hết cho 3

+) TH2: Nếu m chia 3 dư 1 => m+2 chia hết cho 3 => Tích 3 số chia hết cho 3

+) TH3: Nếu m chia 3 dư 2 => m+1 chia hết cho 3 => Tích 3 số chia hết cho 3

=> Kết luận: Tích 3 số tự nhiên liên tiếp chia hết cho 3 (đpcm)

 

27 tháng 8 2021

a, 

Gọi hai số tự nhiên liên tiếp là a và a + 1

Nếu a chia hết cho 2 thì bài toán được chứng minh.

Nếu a không chia hết cho 2 thì a = 2k + 1 (k∈N)

Suy ra: a + 1 = 2k + 1 + 1 = 2k + 2

Ta có: 2k ⋮ 2; 2 ⋮ 2

Suy ra: (2k + 2) ⋮ 2 hay (a + 1) ⋮ 2

Vậy trong hai số tự nhiên liên tiếp, có một số chia hết cho 2

Mik chỉ làm được câu a thôi nhưng vẫn mong bạn ủng hộ ^-^

27 tháng 7 2017

a) hai số liên tiếp thì sẽ có 1 số chẵn và  1 số lẻ , số chẵn là số chia hết cho 2 nên trong hai số tự nhiên liên tiếp sẽ có 1 số chia hết cho 2

3 tháng 8 2019

a) Vì có 1 số chẵn và 1 số lẻ trong 2 số tự nhiên liên tiếp nên chia hết cho 2 

b) Trong 3 số tự nhiên liên tiếp thì có số cộng các chữ số của số đó chia hết cho3 

c) Tổng 2 số tự nhiên liên tiếp là chẵn + lẻ = lẻ nên ko chia hết cho 2 

d) 3 số tự nhiên liên tiếp thì có 1 số chia 3 dư 1 , 1 số chia 3 dư 2 , 1 số chia hết cho 3 nên lấy số dư là 1+2=3 chia hết cho 3 nên tổng 3 số tự nhiên liên tiếp chia hết cho 3

22 tháng 12 2016

Gọi hai số cần tìm là a , a + 1

Vậy a.(a + 1) = 2a + a = 3a 

22 tháng 12 2016

mình sẽ đặt câu hỏi mới