Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(cos^4x-sin^4x=\left(cos^2x+sin^2x\right)\left(cos^2x-sin^2x\right)=cos^2x-sin^2x\)
b) \(\frac{1}{1+tanx}+\frac{1}{1+cotx}=\frac{1}{1+tanx}+\frac{tanxcotx}{tanxcotx+cotx}=\frac{1}{1+tanx}+\frac{tanx}{tanx+1}\)
\(=\frac{1+tanx}{1+tanx}=1\)
c) Ta có: \(1+tan^2x=1+\frac{sin^2x}{cos^2x}=\frac{cos^2x+sin^2x}{cos^2x}=\frac{1}{cos^2x}\)
\(\Rightarrow\frac{1}{1+tan^2x}=cos^2x\)
Tương tự \(\frac{1}{1+tan^2y}=cos^2y\)
\(\Rightarrow cos^2x-cos^2y=\frac{1}{1+tan^2x}-\frac{1}{1+tan^2y}\)
\(cos^2x-cos^2y=\left(1-sin^2x\right)-\left(1-sin^2y\right)=sin^2y-sin^2x\)
d) \(\frac{1+sin^2x}{1-sin^2x}=\frac{cos^2x+sin^2x+sin^2x}{cos^2x+sin^2x-sin^2x}=\frac{cos^2x+2sin^2x}{cos^2x}=1+2\left(\frac{sinx}{cosx}\right)^2=1+2tan^2x\)
\(x=\sqrt{\sqrt{2}-1}\Leftrightarrow x^2+1=\sqrt{2}\Leftrightarrow x^4+2x^2-1=0\)
\(Q=x^2\left(x^4+2x^2-1\right)+x\left(x^4+2x^2-1\right)+2019=2019\)
\(x=\sqrt{\sqrt{2}-1}\)\(\Leftrightarrow x^2=\sqrt{2}-1\)\(\Leftrightarrow x^2+1=\sqrt{2}\)\(\Leftrightarrow\left(x^2+1\right)^2=2\)
rồi chuyển vế
Nhẩm nghiệm, thấy x=-1 thỉ P=0, phân tích đa thức dần thành nhân tử
P(x)=\(\left(x+1\right)\left(2x^3-9x^2+7x+6\right)\)
=\(2x^{^{ }4}+2x^3-9x^3-9x^2+7x^2+7x+6x+6\)
=\(\left(x+1\right)\left(x-2\right)\left(2x^2-5x-3\right)\)
=\(\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-1\right)\)
Đây là 1 tích trong đó có 3 số nguyên lien tiep.
Trong 3 so nguyen lien tiep co it nhat 1 so chan va 1 so chia het cho 3
=> h cua chung chia het cho 2x3=6.
Vay P chia het cho 6.
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{bc+ac+ab}{abc}=0\Rightarrow bc+ac+ab=0\)
Biến đổi vế phải ta có:
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
\(=a^2+b^2+c^2+2\left(ab+bc+ac\right)=a^2+b^2+c^2+2.0=a^2+b^2+c^2\)
=> ĐPCM
B, -x^2 + 2x - 4 = - ( x^2 - 2x + 4 ) = - ( x^2 - 2x + 1 + 3 ) = -(x + 1 )^2 - 3 <= -3
=> 3/ -(x+1)^2-3 >= 3/-3=-1
Vậy GTNN của A là -1 khi x = -1
a)\(A=3\cdot\left|1-2x\right|-5\)
Vì \(\left|1-2x\right|\ge0\Rightarrow3\cdot\left|1-2x\right|\ge0\Rightarrow3\cdot\left|1-2x\right|-5\ge0-5=-5\)
\(\Rightarrow A\ge-5\)
\(\Rightarrow MIN_A=-5\Leftrightarrow\left|1-2x\right|=0\Leftrightarrow1-2x=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
b)\(B=\left(2x^2+1\right)^4-3\)
Vì \(\left(2x^2+1\right)^4\ge1\Rightarrow\left(2x^2+1\right)^4-3\ge1-3=-2\)
\(\Rightarrow A\ge-2\)
\(\Rightarrow MIN_A=-2\Leftrightarrow\left(2x^2+1\right)^4=1\Leftrightarrow2x^2+1=1\Leftrightarrow2x^2=0\Leftrightarrow x=0\)
c)\(C=\left|x-\frac{1}{2}\right|+\left(y+2\right)^2+11\)
Vì \(\left|x-\frac{1}{2}\right|\ge0,\left(y+2\right)^2\ge0\Rightarrow\left|x-\frac{1}{2}\right|+\left(y+2\right)^2+11\ge0+0+11=11\)
\(\Rightarrow A\ge11\)
\(\Rightarrow MIN_A=11\Leftrightarrow\left|x-\frac{1}{2}\right|=0\Leftrightarrow x=\frac{1}{2},\left(y+2\right)^2=0\Leftrightarrow y+2=0\Leftrightarrow y=-2\)
1)\(A=\sqrt{x^2-2x+1}+\sqrt{x^2+2x+1}\\ A=\left|x-1\right|+\left|x+1\right|\\ A=\left|1-x\right|+\left|x+1\right|\ge\left|1-x+x+1\right|=2\)
dấu "=" xảy ra khi \(\left[{}\begin{matrix}\left\{{}\begin{matrix}1-x\ge0\\x+1\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}1-x< 0\\x+1< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}1\ge x\\x\ge-1\end{matrix}\right.\left(nhận\right)\\\left\{{}\begin{matrix}1< x\\x< -1\end{matrix}\right.\left(loại\right)\end{matrix}\right.\)
vậy....
\(B=\sqrt{4x^2-12x+9}+\sqrt{4x^2+12x+9}\\ B=\left|2x-3\right|+\left|2x+3\right|\\ B=\left|3-2x\right|+\left|2x+3\right|\ge\left|3-2x+2x+3\right|=6\)
dấu " = " xảy ra khi \(\left[{}\begin{matrix}\left\{{}\begin{matrix}3-2x\ge0\\2x+3\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}3-2x< 0\\2x+3< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3\ge2x\\2x\ge-3\end{matrix}\right.\\\left\{{}\begin{matrix}3< 2x\\2x< -3\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\dfrac{3}{2}\ge x\\x\ge-\dfrac{3}{2}\end{matrix}\right.\left(nhận\right)\\\left\{{}\begin{matrix}\dfrac{3}{2}< x\\x< -\dfrac{3}{2}\end{matrix}\right.\left(loại\right)\end{matrix}\right.\)
vậy....
2)
\(A=\sqrt{x+4}+\sqrt{4-x}\\ A^2=x+4+4-x+2\sqrt{\left(x+4\right)\left(4-x\right)}\\ A^2=4+2\sqrt{16-x^2}\\ vìx^2\ge0nên\\ A^2\le12\\ A\le\sqrt{12}\)
dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x^2\ge0\\x^2\le16\end{matrix}\right.\Rightarrow0\le x\le4\)
vậy...
\(B=\sqrt{x+6}+\sqrt{6-x}\\ B^2=x+6+6-x+2\sqrt{\left(x+6\right)\left(6-x\right)}\\ B^2=12+2\sqrt{36-x^2}\\ vì\: x^2\ge0nên\\ B^2\le24\\ B\le\sqrt{24}\)
dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x^2\ge0\\x^2\le36\end{matrix}\right.\Rightarrow0\le x\le6\)
Ta có : \(x^3+y^3=2x^2y^2\Rightarrow\left(x^3+y^3\right)^2=4x^4y^4\)
\(x^6+y^6+2x^3y^3=4x^4y^4\Rightarrow x^6+y^6-2x^3y^3=4x^4y^4-4x^3y^3\)
\(\left(x^3-y^3\right)^2=4x^3y^3\left(xy-1\right)\Rightarrow xy-1=\frac{\left(x^3-y^3\right)^2}{4x^3y^3}\)
\(\frac{xy-1}{xy}=\frac{\left(x^3-y^3\right)^2}{4x^4y^4}\) (chia cả 2 vế cho xy)\(\Rightarrow1-\frac{1}{xy}=\frac{\left(x^3-y^3\right)^2}{4x^4y^4}\)
\(\Rightarrow\sqrt{1-\frac{1}{xy}}=\frac{x^3-y^3}{2x^2y^2}\)
P=(x2-1)2+(x-1)2 lớn hơn = 0 với mọi x