Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :(a+b-c)2 \(\ge\) 0
<=>a2+b2+c2 \(\ge\) 2(bc-ab+ac)
<=>\(\frac{5}{3}\ge\) 2(bc-ab+ac)
<=>bc+ac-ab \(\le\frac{5}{6}< 1\)
<=>\(\frac{bc+ac-ab}{abc}< \frac{1}{abc}\) (vì a,b,c>0 nên chia cả 2 vế cho abc)
<=>\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< 1\) (đpcm)
\(\frac{1}{2a^2+b^2}+\frac{1}{2b^2+c^2}+\frac{1}{2c^2+a^2}=\frac{1}{a^2+a^2+b^2}+\frac{1}{b^2+b^2+c^2}+\frac{1}{c^2+c^2+a^2}\)
\(< =\frac{1}{9}\left(\frac{1}{a^2}+\frac{1}{a^2}+\frac{1}{b^2}\right)+\frac{1}{9}\left(\frac{1}{b^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+\frac{1}{9}\left(\frac{1}{c^2}+\frac{1}{c^2}+\frac{1}{a^2}\right)\)(bđt svacxo)
\(=\frac{1}{9}\left(\frac{1}{a^2}+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{b^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{c^2}+\frac{1}{c^2}+\frac{1}{a^2}\right)=\frac{1}{9}\cdot3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
\(=\frac{1}{9}\cdot3\cdot\frac{1}{3}=\frac{1}{9}\cdot1=\frac{1}{9}\)
\(\Rightarrow\frac{1}{2a^2+b^2}+\frac{1}{2b^2+c^2}+\frac{1}{2c^2+a^2}< =\frac{1}{9}\)(đpcm)
dấu = xảy ra khi \(\frac{1}{a^2}=\frac{1}{b^2}=\frac{1}{c^2}=\frac{1}{9}\Rightarrow a=b=c=3\)
a)\(A=3\cdot\left|1-2x\right|-5\)
Vì \(\left|1-2x\right|\ge0\Rightarrow3\cdot\left|1-2x\right|\ge0\Rightarrow3\cdot\left|1-2x\right|-5\ge0-5=-5\)
\(\Rightarrow A\ge-5\)
\(\Rightarrow MIN_A=-5\Leftrightarrow\left|1-2x\right|=0\Leftrightarrow1-2x=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
b)\(B=\left(2x^2+1\right)^4-3\)
Vì \(\left(2x^2+1\right)^4\ge1\Rightarrow\left(2x^2+1\right)^4-3\ge1-3=-2\)
\(\Rightarrow A\ge-2\)
\(\Rightarrow MIN_A=-2\Leftrightarrow\left(2x^2+1\right)^4=1\Leftrightarrow2x^2+1=1\Leftrightarrow2x^2=0\Leftrightarrow x=0\)
c)\(C=\left|x-\frac{1}{2}\right|+\left(y+2\right)^2+11\)
Vì \(\left|x-\frac{1}{2}\right|\ge0,\left(y+2\right)^2\ge0\Rightarrow\left|x-\frac{1}{2}\right|+\left(y+2\right)^2+11\ge0+0+11=11\)
\(\Rightarrow A\ge11\)
\(\Rightarrow MIN_A=11\Leftrightarrow\left|x-\frac{1}{2}\right|=0\Leftrightarrow x=\frac{1}{2},\left(y+2\right)^2=0\Leftrightarrow y+2=0\Leftrightarrow y=-2\)
Đặt \(u=\frac{x}{a};\) và \(v=\frac{y}{b}\) \(\Rightarrow\) \(\hept{\begin{cases}u,v\in Z\\u+v=1\\uv=-2\end{cases}}\)
Khi đó, ta có:
\(u+v=1\)
nên \(\left(u+v\right)^3=1\) \(\Leftrightarrow\) \(u^3+v^3+3uv\left(u+v\right)=1\)
Do đó, \(u^3+v^3=1-3uv\left(u+v\right)=1+6=7\)
Vậy, \(\frac{x^3}{a^3}+\frac{y^3}{b^3}=7\)
\(ĐK:\) \(a,b,c\ne0\)
Ta có:
\(a+b+c=0\)
\(\Leftrightarrow\) \(a+b=-c\)
\(\Rightarrow\) \(\left(a+b\right)^2=\left(-c\right)^2\)
\(\Leftrightarrow\) \(a^2+b^2+2ab=c^2\)
nên \(a^2+b^2-c^2=-2ab\)
Tương tự với vòng hoán vị \(b\rightarrow c\rightarrow a\) ta cũng suy ra được:
\(\hept{\begin{cases}b^2+c^2-a^2=-2bc\\c^2+a^2-b^2=-2ca\end{cases}}\)
Khi đó, biểu thức \(P\) được viết lại dưới dạng:
\(P=-\frac{1}{2bc}-\frac{1}{2ca}-\frac{1}{2ab}=-\frac{1}{2}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=-\frac{1}{2}\left(\frac{a+b+c}{abc}\right)=0\) (do \(a,b,c\ne0\) )
Áp dụng bunhiacopsky ta có
(a3 + b3 + c3)(\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\))\(\ge\)(\(\frac{\sqrt{a^3}}{\sqrt{a}}+\frac{\sqrt{b^3}}{\sqrt{b}}+\frac{\sqrt{c^3}}{\sqrt{c}}\))2 = (a + b + c)2
2) M = (x25 + 1 + 1 + 1 + 1) - 5x5 + 2
Áp dụng BĐT Cô - si cho 5 số dương x25; 1;1;1;1 ta có: x25 + 1 + 1 + 1 + 1 \(\ge\)5.\(\sqrt[5]{x^{25}.1.1.1.1}=x^5\) = 5x5
=> M \(\ge\) 5x5 - 5x5 + 2 = 2
Vậy M nhỏ nhất = 2 khi x25 = 1 => x = 1
\(ab=\frac{1}{c};c=\frac{1}{ab}\)
\(a+b+c-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=a+b+\frac{1}{ab}-\frac{1}{a}-\frac{1}{b}-ab\)
\(=\left(a+b-ab-1\right)+\left(\frac{1}{ab}-\frac{1}{a}-\frac{1}{b}+1\right)\)
\(=-\left(a-1\right)\left(b-1\right)+\left(1-\frac{1}{a}\right)\left(1-\frac{1}{b}\right)\)
\(=-\left(a-1\right)\left(b-1\right)+\frac{\left(a-1\right)\left(b-1\right)}{ab}\)
\(=-\left(a-1\right)\left(b-1\right)+\left(a-1\right)\left(b-1\right)c\)
\(=\left(a-1\right)\left(b-1\right)\left(c-1\right)\)
Do biểu thức ban đầu dương nên ta có đpcm
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{bc+ac+ab}{abc}=0\Rightarrow bc+ac+ab=0\)
Biến đổi vế phải ta có:
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
\(=a^2+b^2+c^2+2\left(ab+bc+ac\right)=a^2+b^2+c^2+2.0=a^2+b^2+c^2\)
=> ĐPCM
B, -x^2 + 2x - 4 = - ( x^2 - 2x + 4 ) = - ( x^2 - 2x + 1 + 3 ) = -(x + 1 )^2 - 3 <= -3
=> 3/ -(x+1)^2-3 >= 3/-3=-1
Vậy GTNN của A là -1 khi x = -1