Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình mới học lớp 5
có phải:
E= 1.4+4.7+7.10+...+(3n-2).(3n+1) (với n € N*)
F=2.5+5.8+8.11+...+(3n+2).(3n+5) (với n € N)
G=1.4+7.10+13.16+...+97.100
nếu đúng k cho mình nha
a) \(2^x+2^{x+1}+2^{x+2}+2^{x+3}=480\)
\(\Leftrightarrow2^x\left(1+2^1+2^2+2^2\right)=15.2^x\)
\(\Leftrightarrow15.2^x=480\)
\(\Leftrightarrow2^x=480:15\)
\(\Leftrightarrow2^x=32\)
\(\Leftrightarrow2^x=2^5\)
=> x = 5
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{97.100}=\frac{0,33.x}{2009}\)
\(\Leftrightarrow\frac{1}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right)=\frac{0,33.x}{2009}\)
\(\Leftrightarrow\frac{1}{3}\left(1-\frac{1}{100}\right)=\frac{0,33.x}{2009}\)
\(\Leftrightarrow\frac{1}{3}.\frac{99}{100}=\frac{0,33.x}{2009}\)
\(\Leftrightarrow\frac{1.33}{1.100}=\frac{0,33.x}{2009}\)
\(\Leftrightarrow\frac{33}{100}=\frac{0,33.x}{2009}\)
\(\Leftrightarrow33.x=66297\)
\(\Leftrightarrow x=22099\)
S=1/1-1/4+1/4-1/7+.........+1/N-1/N+1
=1/1-(1/4-1/4)+...............+(1/N-1/N)-1/N+1
=1-1/N+1
->S<1
NHA!
ta có \(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{\left(n+3\right)}\)
\(S=1-\frac{1}{\left(n+3\right)}\)
thì đương nhiên S nhỏ hơn 1 rồi
\(S=\frac{3}{1.4}+\frac{3}{4.7}+......+\frac{3}{n\left(n+3\right)}\)
\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{n}-\frac{1}{n+3}\)
\(=1-\frac{1}{n+3}\)
Ta có :
\(\frac{1}{n+3}>0\)
\(\Leftrightarrow-\frac{1}{n+3}< 0\)
\(\Leftrightarrow1-\frac{1}{n+3}< 1\)
\(\Leftrightarrow S< 1\left(đpcm\right)\)
\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{n.\left(n+3\right)}\)
\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)
\(S=1-\frac{1}{n+3}\)
\(S=\frac{n+2}{n+3}\)
Vi \(n\inℕ^∗\)nên \(n+2< n+3\)
DO đó\(\frac{n+2}{n+3}< 1\)
Vậy S <1
Do : \(\frac{3}{1.4}=\frac{1}{1}-\frac{1}{4};\frac{3}{4.7}=\frac{1}{4}-\frac{1}{7}\).... tuong tu ... \(\frac{3}{n\left(n+3\right)}=\frac{1}{n}-\frac{1}{n+3}\)
S= \(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{n-3}-\frac{1}{n}+\frac{1}{n}-\frac{1}{n+3}\)
S= \(1-\frac{1}{n+3}\)<1
=> S<1 (dpcm)
(do : 3/ 1.4 = 1/1 - 1/4; 3/4.7= 1/4 - 1/7 ...
S= 1- 1/4 + 1/4 + 1/4 - 1/7 + ... + 1/ n - 1/ (n+3)
S= 1- 1/ (n+3) <1
=> S <1 (dpcm)
điều kiện n thuộc N hay khác 0 gì không bạn?
khác 0 bạn ạ mk quên