Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)
\(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)
\(=6\times\left(2^2+2^3+...+2^{2008}\right)\)
\(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)
\(\Rightarrow A⋮3\)
*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(\Rightarrow A⋮7\)
Mình sửa lại đề C 1 chút xíu
*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)
\(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow C⋮4\)
Các câu khác làm tương tự nhé. Chúc bạn học tốt!
a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)
\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)
Các ý dưới bạn làm tương tự nhé.
1, AAA
=Ax100+Ax10+A
=Ax(100+10+1)
=Ax111
Vì 111 chia hết cho 37
=> Ax111 chia hết cho 37
hay AAA chia hết cho 37
2,AB-BA
=(AX10+B)-(BX10+A)
=AX10+B-BX10-A
=(AX10-A)+(B-BX10)
=AX(10-1)+BX(1-10)
=AX9+BX(-9)
=AX9+(-B)X9
=9X[A+(-B)]
Vì 9 chia hết cho 9=>9x[A+(-B)] chia hết cho 9
hay AB-BA chia hết cho 9
Nhớ tick cho mik nha
Giả sử như mệnh đề trên đúng :
n^2+1 chia hết cho 4
* Nếu n chẵn : n = 2k , k thuộc N
=> n^2 +1 = 4k^2 +1 k chia hết cho 4
* nếu n lẻ : n = 2k + 1
=> n^2 +1 = 4k^2 +4k +2
=> n^2 +1 = 4k(k+1)+2
k , k +1 là 2 số tự nhiên liên tiếp
=> k(k+1) chia hết cho 2
=> 4k(k+1)chia hết cho 4
=> 4k(k+1)+2 chia cho 4 , dư 2
=> 4k (k+1)+2 k chia hết cho 4
Ta có \(P=n^2+n+7=n\left(n+1\right)+7\). Ta thấy \(n,n+1\) là 2 số tự nhiên liên tiếp nên \(n\left(n+1\right)⋮2\) \(\Rightarrow P=n\left(n+1\right)+7⋮̸2\)
Bây giờ ta sẽ chứng minh \(P⋮̸5\). Thật vậy, giả sử tồn tại n để \(P⋮5\) . Khi đó vì P lẻ nên P có chữ số tận cùng là 5.
\(\Rightarrow n\left(n+1\right)\) có chữ số tận cùng là 3, điều này rõ ràng vô lí vì \(n\left(n+1\right)⋮2\). Vậy điều giả sử là sai \(\Rightarrow P⋮̸5\) (đpcm)
Chỗ này 8 mới đúng nhé. Mình vẫn phải làm thêm 1 bước nữa.
Ta thấy \(n^2\) chỉ có thể có chữ số tận cùng là 0, 1, 4, 5, 6, 8, 9. Ta kí hiệu \(f\left(a\right)\) là chữ số tận cùng của số tự nhiên a.
Khi đó nếu \(f\left(n^2\right)=0\) thì \(f\left(n\right)=0\), do đó \(f\left(P\right)=0\), loại.
Nếu \(f\left(n^2\right)=1\) thì \(\left[{}\begin{matrix}f\left(n\right)=1\\f\left(n\right)=9\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}f\left(P\right)=2\\f\left(P\right)=0\end{matrix}\right.\), loại.
Nếu \(f\left(n^2\right)=4\) thì \(\left[{}\begin{matrix}f\left(n\right)=2\\f\left(n\right)=8\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}f\left(P\right)=6\\f\left(P\right)=2\end{matrix}\right.\), loại.
Nếu \(f\left(n^2\right)=5\) thì \(f\left(n\right)=5\) nên \(f\left(P\right)=0\), loại.
Nếu \(f\left(n^2\right)=6\) thì \(\left[{}\begin{matrix}f\left(n\right)=4\\f\left(n\right)=6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}f\left(P\right)=0\\f\left(P\right)=2\end{matrix}\right.\), loại.
Nếu \(f\left(n^2\right)=9\) thì \(\left[{}\begin{matrix}f\left(n\right)=3\\f\left(n\right)=7\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}f\left(P\right)=2\\f\left(P\right)=6\end{matrix}\right.\), loại.
Vậy với mọi n thì chữ số tận cùng của P không thể là 8, dẫn tới vô lí. Ta có đpcm.