K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)    Ta có:

\(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{ - \frac{3}{4}{{.2}^n}}}{{ - \frac{3}{4}{{.2}^{n - 1}}}} = \frac{{{2^n}}}{{{2^{n - 1}}}} = {2^1} = 2\)

 Dãy số là cấp số nhân

b)    Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{\frac{5}{{{3^n}}}}}{{\frac{5}{{{3^{n - 1}}}}}} = {3^{ - 1}} = \frac{1}{3}\)

 Dãy số là cấp số nhân

c)    Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{{{\left( { - 0,75} \right)}^n}}}{{{{\left( { - 0,75} \right)}^{n - 1}}}} = {\left( { - 0,75} \right)^{ - 1}} =  - \frac{4}{3}\)

 Dãy số là cấp số nhân

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)    Dãy số trên là cấp số cộng

Ta có:

\(\begin{array}{l}{u_n} = {u_1} + \left( {n - 1} \right)d \Rightarrow {u_1} + \left( {n - 1} \right)d = 3 - 2n\\ \Leftrightarrow {u_1} + nd - d = 3 - 2n\\ \Leftrightarrow \left\{ \begin{array}{l}{u_1} - d = 3\\nd =  - 2n\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 1\\d =  - 2\end{array} \right.\end{array}\)

b)    Dãy số trên là cấp số cộng

Ta có:

 \(\begin{array}{l}{u_n} = {u_1} + \left( {n - 1} \right)d \Rightarrow {u_1} + \left( {n - 1} \right)d = \frac{{3n + 7}}{5}\\ \Leftrightarrow {u_1} + nd - d = \frac{{3n}}{5} + \frac{7}{5}\\ \Leftrightarrow \left\{ \begin{array}{l}{u_1} - d = \frac{7}{5}\\nd = \frac{3}{5}n\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 2\\d = \frac{3}{5}\end{array} \right.\end{array}\)

c) Dãy số đã cho không là cấp số cộng

Ta có: \( u_{n+1} = 3^{n+1} = 3.3^n \)

Xét hiệu \( u_{n+1} – u_n = 3.3^n – 3^n = 2.3^n \) với n ∈ ℕ*

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)    Năm số hạng đầu của dãy số là: 3; 9; 19; 33; 51

b)    Năm số hạng đầu của dãy số là: \( - 1;\frac{1}{3}; - \frac{1}{5};\frac{1}{7}; - \frac{1}{9}\)

c)    Năm số hạng đầu của dãy số là: \(2;2;\frac{8}{3};4;\frac{{32}}{5}\)

d)    Năm số hạng đầu của dãy số là: \(2;\frac{9}{4};\frac{{64}}{{27}};\frac{{625}}{{256}};\frac{{7776}}{{3125}}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Ta có: \({u_{n + 1}} = \frac{{{{\left( {n + 1} \right)}^2}}}{{n + 1 + 1}} = \frac{{{{\left( {n + 1} \right)}^2}}}{{n + 2}}\)

Xét hiệu \({u_{n + 1}} - {u_n} = \frac{{{{\left( {n + 1} \right)}^2}}}{{n + 2}} - \frac{{{n^2}}}{{n + 1}} = \frac{{{{\left( {n + 1} \right)}^3} - {n^2}\left( {n + 2} \right)}}{{\left( {n + 2} \right)\left( {n + 1} \right)}} = \frac{{{n^3} + 3{n^2} + 3n + 1 - {n^3} - 2{n^2}}}{{\left( {n + 2} \right)\left( {n + 1} \right)}}\)

\( = \frac{{{n^2} + 3n + 1}}{{\left( {n + 2} \right)\left( {n + 1} \right)}} > 0\) với mọi n ∈ ℕ*.

Vì vậy dãy số đã cho là dãy số tăng.

b) Ta có: \({u_{n + 1}} = \frac{2}{{{5^{n + 1}}}}\)

Xét hiệu \({u_{n + 1}} - {u_n} = \frac{2}{{{5^{n + 1}}}} - \frac{2}{{{5^n}}} = - \frac{4}{5}.\frac{2}{{{5^n}}} = - \frac{8}{{{5^{n + 1}}}} < 0\)

Vì vậy dãy số đã cho là dãy số giảm.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) \({u_n} = 3n - 2\)

\( \Rightarrow {u_1} = 3.1 - 2 = 1\)

\( \Rightarrow {u_2} = 3.2 - 2 = 4\)

\( \Rightarrow {u_3} = 3.3 - 2 = 7\)

\( \Rightarrow {u_4} = 3.4 - 2 = 10\)

\( \Rightarrow {u_5} = 3.5 - 2 = 13\)

\( \Rightarrow {u_{100}} = 3.100 - 2 = 298\)

b) \({u_n} = {3.2^n}\)

\( \Rightarrow {u_1} = {3.2^1} = 6\)

\( \Rightarrow {u_2} = {3.2^2} = 12\)

\( \Rightarrow {u_3} = {3.2^3} = 24\)

\( \Rightarrow {u_4} = {3.2^4} = 48\)

\( \Rightarrow {u_5} = {3.2^5} = 96\)

\( \Rightarrow {u_{100}} = {3.2^{100}}\)

c) \({u_n} = {\left( {1 + \frac{1}{n}} \right)^n}\)

\( \Rightarrow {u_1} = {\left( {1 + \frac{1}{1}} \right)^1} = 2\)

\( \Rightarrow {u_2} = {\left( {1 + \frac{1}{2}} \right)^2} = \frac{9}{4}\)

\( \Rightarrow {u_3} = {\left( {1 + \frac{1}{3}} \right)^3} = \frac{{64}}{{27}}\)

\( \Rightarrow {u_4} = {\left( {1 + \frac{1}{4}} \right)^4} = \frac{{625}}{{256}}\)

\( \Rightarrow {u_5} = {\left( {1 + \frac{1}{5}} \right)^5} = \frac{{7776}}{{3125}}\)

\( \Rightarrow {u_{100}} = {\left( {1 + \frac{1}{{100}}} \right)^{100}} = {\left( {\frac{{101}}{{100}}} \right)^{100}}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có: \({u_n} - {u_{n - 1}} = \left( {4n - 3} \right) - \left[ {4\left( {n - 1} \right) - 3} \right] = 4,\;\forall n \ge 2\).

Vậy \(\left( {{u_n}} \right)\) là một cấp số cộng với số hạng đầu \({u_1} = 1\) và công sai \(d = 4\)

Số hạng tổng quát \({u_n} = 1 + 4\left( {n - 1} \right)\).

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

\(\begin{array}{l}{u_1} = \frac{1}{{1.2}} = \frac{1}{2}\\{u_2} = \frac{1}{{1.2}} + \frac{1}{{2.3}} = \frac{2}{3}\\{u_3} = \frac{1}{{1.2}} + \frac{1}{{2.3}} + \frac{1}{{3.4}} = \frac{3}{4}\\{u_n} = \frac{n}{{n + 1}}\end{array}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) \({u_1} = 5,\;\;{u_2} = 10,\;\;\;{u_3} = 15,\;\;{u_4} = 20,\;\;\;{u_5} = 25\).

Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{5n}}{{5n - 1}} \)phụ thuộc vào n.

Suy ra dãy số \(\left( {{u_n}} \right)\) không phải là cấp số nhân.

b) \({u_1} = 5,\;\;{u_2} = 25,\;\;{u_3} = 125,\;\;\;{u_4} = 625,\;\;\;{u_5} = 3125\).

Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{{5^n}}}{{{5^{n - 1}}}} = 5,\;\forall n \ge 2\).

Do đó dãy số \(\left( {{u_n}} \right)\) là cấp số nhân với công bội \(q = 5\).

Số hạng tổng quát: \({u_n} = 5 \times {5^{n - 1}}= 5^{n}\).

c) \({u_1} = 1,\;\;\;{u_2} = 2,\;\;\;{u_3} = 6,\;\;\;{u_4} = 24,\;\;\;{u_5} = 120\).

 có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = n\) phụ thuộc vào n, \(\forall n \in {N^*}\).

Suy ra dãy số \(\left( {{u_n}} \right)\) không phải là cấp số nhân.

d) \({u_1} = 1,\;\;{u_2} = 5,\;\;{u_3} = 25,\;\;\;{u_4} = 125,\;\;\;{u_5} = 625\).

Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = 5,\;\forall n \ge 2\).

Do đó dãy số \(\left( {{u_n}} \right)\) là cấp số nhân với công bội \(q = 5\).

Số hạng tổng quát: \({u_n} = {5^{n - 1}}\).

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Đáp án đúng là: D

Công thức số hạng tổng quát của cấp số cộng un = – 5 + (n – 1).4 = 4n – 9.

26 tháng 8 2023

Ta có:

\(u_1=\dfrac{1}{3^1-1}=\dfrac{1}{2}\\ u_2=\dfrac{2}{3^2-1}=\dfrac{1}{4}\\ u_3=\dfrac{3}{3^3-1}=\dfrac{3}{26}\)

\(\Rightarrow B\)

 

Chọn B