K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2018

\(A=\left(x-y\right)^2\left(z^2-2z+1\right)-2\left(z-1\right)\left(x-y\right)^2+\left(x-y\right)^2\)

\(A=\left(x-y\right)^2\left(z-1\right)^2-2\left(x-y\right)\left(z-1\right)\left(x-y\right)+\left(x-y\right)^2\)

\(A=\left[\left(x-y\right)\left(z-1\right)-\left(x-y\right)\right]^2\ge0\) \(\forall x,y,z\)

DD
15 tháng 5 2021

\(-5-\left(x-1\right)\left(x+2\right)=-5-\left(x^2+x-2\right)=-5-x^2-x+2\)

\(=-x^2-x-3=-\left(x+\frac{1}{2}\right)^2-\frac{11}{4}< 0,\forall x\inℝ\)

19 tháng 8 2018

Mang hết bài tập lên hỏi à, sao nhiều thế

19 tháng 8 2018

Ơ thế liên quan l đến cậu à Thành? Hay nên gọi là Thánh chứ nhỉ? :) Có ai khiến cậu trả lời không mà kêu lắm :> Đấy là bài tập chỗ học thêm bên ngoài, đ' làm được thì lên hỏi thắc mắc làm l gì :> Đ' hỏi bài tập ở lớp thì thôi đừng ngồi chõ mồm vào :>

4 tháng 10 2019

2. Ta có: P = 2x2 + y2 - 4x - 4y + 10

P = 2(x2 - 2x + 1) + (y2 - 4y + 4) + 4

P = 2(x - 1)2 + (y - 2)2 + 4 \(\ge\)\(\forall\)x;y

=> P luôn dương với mọi biến x;y

3 Ta có:

(2n + 1)(n2 - 3n - 1) - 2n3 + 1

= 2n3 - 6n2 - 2n + n2 - 3n - 1 - 2n3 + 1

= -5n2 - 5n = -5n(n + 1) \(⋮\)\(\forall\)\(\in\)Z

20 tháng 4 2020

1×2=2

10 tháng 2 2018

Đặt x2+1=a(a\(\ge1\))

=> A= a4+9a3+21a2-a-30

        =(a-1)(a3+10a2+31a+30)

Do a\(\ge1\)=>\(\hept{\begin{cases}a-1\ge0\\a^3+10a^2+31a+30>0\end{cases}}\)

=> A\(\ge0\)(ĐPCM)