K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2018

Hình như sai đề .

Bài 3 : 

\(a)\left|3x-2\right|=x\)

\(\Rightarrow\orbr{\begin{cases}3x-2=x\\3x-2=-x\end{cases}\Rightarrow\orbr{\begin{cases}3x-x=2\\3x+x=2\end{cases}\Rightarrow}\orbr{\begin{cases}2x=2\\4x=2\end{cases}\Rightarrow}\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}}\)

vậy \(x=1;x=\frac{1}{2}\)

Bài 10

\(a)\)cách 1: cm vế trái bằng vế phải

\(\left(a-b\right)^2=\left(a-b\right)\left(a-b\right)\)

                  \(=a^2-ab-ab+b^2\)

                  \(=a^2-2ab+b^2\)

cách 2 : cm vế phải = vế trái

\(a^2-2ab+b^2=a^2-ab-ab+b^2=\left(a-b\right)\left(a-b\right)=\left(a-b\right)^2\)

\(b)A=\left(5x^4-3y^3\right)^2\)

       \(=\left(5x^4\right)^2-2\times5x^4\times3y^3+\left(3y^3\right)^2\)

       \(=25x^8-30x^4y^3+9y^6\)

17 tháng 9 2018

3.a.

ta có

 \(|3x-2|=x\\\Rightarrow\orbr{\begin{cases}3x-2=x\\-3x+2=x\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}3x-x=2\\-3x-x=-2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}2x=2\\-4x=-2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}\)

10a:

ta có

\(\left(a-b\right)^2=\left(a-b\right)\left(a-b\right)\)

rồi nhân ra là dc

10b:

ta có 

\(\left(5x4-3y3\right)^2\)

\(=\left(20x-9y\right)^2\)

\(=\left(400x^2-2.20x.9y+81y^2\right)\)

rồi rút gọn là dc bạn ạ

7 tháng 12 2018

10. a) Ta có : (a + b)2 + (a – b)2 = 2(a2 + b2). Do (a – b)\(^2\) ≥ 0, nên (a + b)\(^2\) ≤ 2(a2 + b2).

b) Xét : (a + b + c)\(^2\) + (a – b)\(^2\) + (a – c)\(^2\) + (b – c)\(^2\)

. Khai triển và rút gọn, ta được : 3(a\(^2\) + b\(^2\) + c\(^2\)).

Vậy : (a + b + c)\(^2\) ≤  3( a\(^2\) + b\(^2\) + c\(^2\)).

7 tháng 12 2018

Cách khác : Biến đổi tương đương

a, \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+2ab+b^2\le2a^2+2b^2\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)luôn đúng

b, \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc\le3a^2+3b^2+3c^2\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)(Luôn đúng)

22 tháng 7 2018

Sorry, đề bài thiếu: a,b,c,d là số dương

19 tháng 5 2019

#)Giải :

c) ( a + b )3 = (a+b)(a+b)(a+b)

= a(a+b)(a+b) +b(a+b)(a+b)

= (a2+ab)(a+b)+(ab+b2)(a+b)

= (a3+a2b+a2b+ab2)+(a2b+ab2+ab2+b2)

= a3+a2b+a2b+ab2+a2b+ab2+ab2+b2

= a3+a2b+a2b+a2b+ab2+ab2+ab2+b2

= a3+3a2b+3ab2+b2

Vậy : (a+b)3= a3+ 3a2b + 3ab2 + b2 ( dpcm )

       #~Will~be~Pens~#

19 tháng 5 2019

a) \(\left(a+b\right)^2=\left(a+b\right)\left(a+b\right)\)

\(=a\left(a+b\right)+b\left(a+b\right)\)

\(=a^2+ab+ab+b^2\)

\(=a^2+2ab+b^2\)

Vậy \(\left(a+b\right)^2=a^2+2ab+b^2\)

18 tháng 10 2016

Có: a/b=c/d => a/c=b/d

=>(a+b)/(c+d)=a/c

=>(a+b)^2/(c+d)^2=(a/c)^2=a/c.b/d=ab/cd

=> dpcm