K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2018

Sửa đề \(2x^2-x^2+9\)

\(=x^2+9\)

Do \(x^2\ge0\)

\(\Rightarrow x^2+9\ge9\)

Vậy đa thức trên vô nghiệm

5 tháng 7 2018

\(2x^2-x^2-9=x^2-9=\left(x-3\right)\left(x+3\right)\)

Where is VT ?

10 tháng 5 2018

\(x^4+2x^3+3x^2+2x+1=\left(x^4+2x^3+x^2\right)+\left(2x^2+2x+1\right)\)

                                                     \(=x^2\left(x^2+x+1\right)+2\left(x^2+x+1\right)\)

                                                        = \(\left(x^2+2\right)\left(x^2+x+1\right)\)

Nhận thấy \(\hept{\begin{cases}x^2+2>0\\x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\end{cases}}\forall x\in R\)

Suy ra , đa thức trên vô nghiệm 

12 tháng 6 2017

1) a) 9x+2x-x=0

11x-x=0

10x=0

x=0

b) 25-9x=0

9x=25

x=25/9

2) \(x^2+x^4+1=x^4+x^2+1=x^4+2x^2-x^2+1\)

\(=\left(x^4+2x^2+1\right)-x^2=\left(x^2+1\right)^2-x^2=0\)

\(\Rightarrow\left(x^2+1\right)^2=0;x^2=0\)

mà \(x^2+1>0\)nên \(\Rightarrow\)phương trình vô nghiệm

12 tháng 6 2017

1)

a) Ta có :

9x + 2x - x = 0

( 9 + 2 - 1 )x = 0

10x = 0

x = 0 : 10

x = 0

Vậy x = 0 là nghiệm của đa thức 9x + 2x - x

b) Ta có :

25 - 9x = 0

9x = 25

x = 25 ; 9

x = 25/9

Vậy x = 25/9 là nghiệm của đa thức 25 - 9x

2. Ta có :

Vì x2 luôn > 0 với mọi giá trị của x

x4 luôn lớn hơn 0 với mọi giá trị x

1 > 0

Vậy x2 + x4 + 1 > với mọi giá trị x

Hay da thức x2 + x4 + 1 vô nghiệm

7 tháng 5 2016

Đặt đa thức đó là A

Ta có: \(A=2\left(x^2+x+\frac{3}{2}\right)=2\left(x^2+2\times x\times\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+\frac{3}{2}\right)\)

\(A=2\left(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\right)\)

\(A=2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}\)

\(A\ge\frac{5}{2}>0\)

Vậy A vô nghiệm

7 tháng 5 2016

2x^2>=0 voi moi x 

2x >=0 với mọi x 

3>0

Vậy đa thức trên vô nghiệm

8 tháng 7 2016

G (x) = x2 + 2x + 3

= x2 + x + x + 1 + 2

= x.(x + 1) + (x + 1) + 2

= (x + 1).(x + 1) + 2

= (x + 1)2 + 2 \(\ge\)2

Vậy G(x) vô nghiệm.

A (x) = x2 - x + 1

= x2 - 1/2x - 1/2x + 1/4 + 3/4

= x.(x - 1/2) - 1/2.(x - 1/2) + 3/4

= (x - 1/2).(x - 1/2) + 3/4

= (x - 1/2)2 + 3/4 \(\ge\)3/4

Vậy A(x) vô nghiệm.

17 tháng 9 2016

\(G\left(x\right)=x^2+2x+3\)

          \(=x^2+x+x+1+2\)

          \(=x.\left(x+1\right)+\left(x+1\right)+2\)

          \(=\left(x+1\right).\left(x+1\right)+2\)

          \(=\left(x+1\right)^2+2\ge2\)

Vậy \(G\left(x\right)\) vô nghiệm .

\(A\left(x\right)=x^2-x+1\)

         \(=x^2-\frac{1}{2}x-\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)

         \(=x.\left(x-\frac{1}{2}\right)-\frac{1}{2}.\left(x-\frac{1}{2}\right)+\frac{3}{4}\)

         \(=\left(x-\frac{1}{2}\right).\left(x-\frac{1}{2}\right)+\frac{3}{4}\)

        \(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy \(A\left(x\right)\) vô nghiệm 

5 tháng 5 2016

Ta có: -2x^2+x-3=-x^2-x^2+x-1/4-11/4= -(x^2-x+1/4)-x^2-11/4= -(x-1/2)^2-x^2-11/4

Đa thức trên luôn bé hơn 0. Do đó đa thức trên ko có nghiệm

5 tháng 5 2016

Ta có : -2x2+x  >/ 0

     => -2x2+x-3 >/ -3 < 0

 Vậy đa thức trên không có nghiệm (vô nghiệm)

1 tháng 5 2017

a) Ta có \(x^2+2x+2=\left(x^2+2x+1\right)\)\(+1=\left(x+1\right)^2+1\)Ma \(\left(x+1\right)^2\ge0\forall x\)

Nen \(\left(x+1\right)^2+1>0\). Vậy đa thức trên vô nghiệm

b) \(-x^2+2x-3=\)\(-\left(x^2-2x+1\right)-2\)\(=-\left(x-1\right)^2-2\)

Ma \(-\left(x-1\right)^2\le0\forall x\)Nen \(-\left(x-1\right)^2-2< 0\)

Vậy đa thức trên vô nghiệm

14 tháng 1 2018

a, Ta có: \(x^2\ge0\Rightarrow x^2+4\ge4>0\)

Vậy đa thức vô nghiệm

b, \(x^2+2x+2=x^2+x+x+2=x\left(x+1\right)+\left(x+1\right)+1=\left(x+1\right)\left(x+1\right)+1=\left(x+1\right)^2+1\)

Mà \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+1\ge1>0\)

Vậy...

d, \(x^2-6x+10=x^2-3x-3x+10=x\left(x-3\right)-3\left(x-3\right)+1=\left(x-3\right)^2+1\)

Mà \(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2+1\ge1>0\)

Vậy..

11 tháng 5 2021

a, \(E\left(x\right)=-\left(x+1\right)^2+12\)

giả sử đa thức trên có nghiệm khi \(-\left(x+1\right)^2+12=0\)

\(\Leftrightarrow\left(x+1\right)^2=12\Leftrightarrow\left(x+1\right)^2-12=0\)

\(\Leftrightarrow\left(x+1-\sqrt{12}\right)\left(x+1+\sqrt{12}\right)=0\)

Vậy giả sử là đúng nên đa thức trên có nghiệm 

b, \(F\left(x\right)=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)

Ta có : \(\left(x-1\right)^2\ge0\forall x;4>0\)

Vậy đa thức trên ko có nghiệm ( đpcm )

c, \(G\left(x\right)=x^2+6x+18=\left(x+3\right)^2+9\)

Ta có : \(\left(x+3\right)^2\ge0\forall x;9>0\)

Vậy đa thức trên ko có nghiệm ( đpcm )

P/s : ý a mình nghĩ chỉ có thế này thôi \(\left(x+1\right)^2+12\)xem lại đề nha